Bài 1: Căn bậc hai

TT

Bài 1/ P=\(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)

a/ Rút gọn

b/ Tìm x để P=\(\dfrac{1}{2}\)

c/ Chứng minh P _< \(\dfrac{2}{3}\)

Giúp em vs ạ

Nhanh nha mn

MP
17 tháng 8 2018 lúc 21:52

a) điều kiện xác định : \(x\ge0;x\ne1\)

\(P=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(\Leftrightarrow P=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\) \(\Leftrightarrow P=\dfrac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\) \(\Leftrightarrow P=\dfrac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\) \(\Leftrightarrow P=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{\left(\sqrt{x}-1\right)\left(2-5\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}\)

b) để \(P=\dfrac{1}{2}\Leftrightarrow\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}=\dfrac{1}{2}\Leftrightarrow4-10\sqrt{x}=\sqrt{x}+3\)

\(\Leftrightarrow11\sqrt{x}=1\Leftrightarrow\sqrt{x}=\dfrac{1}{11}\Leftrightarrow x=\dfrac{1}{121}\)

c) ta có : \(P-\dfrac{2}{3}\Leftrightarrow\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}-\dfrac{2}{3}=\dfrac{6-15\sqrt{x}-2\sqrt{x}-6}{3\left(\sqrt{x}+3\right)}\)

\(=\dfrac{-17\sqrt{x}}{3\sqrt{x}+9}\le0\forall x\ge0\) \(\Rightarrow p< \dfrac{2}{3}\left(đpcm\right)\)

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
LN
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
MS
Xem chi tiết
NL
Xem chi tiết
NV
Xem chi tiết
RP
Xem chi tiết
KM
Xem chi tiết