TD

Bài 1 giải hệ pt

a, \(\begin{cases}\frac{x+y}{3}-\frac{x-y}{3}=\frac{14}{3}\\3x-\frac{y}{2}+\frac{x}{4}=24\end{cases}\)

LF
18 tháng 12 2016 lúc 11:38

\(\begin{cases}\frac{x+y}{3}-\frac{x-y}{3}=\frac{14}{3}\left(1\right)\\3x-\frac{y}{2}+\frac{x}{4}=24\left(2\right)\end{cases}\).Từ \(\left(1\right)\Rightarrow\frac{2y}{3}=\frac{14}{3}\)

\(\Rightarrow2y=14\Rightarrow y=7\) thay vào (2) ta có:

\(3x-\frac{7}{2}+\frac{x}{4}=24\Rightarrow3x+\frac{x}{4}=24+\frac{7}{2}\)

\(\Rightarrow\frac{13x}{4}=\frac{55}{2}\Rightarrow13x\cdot2=55\cdot4\)

\(\Rightarrow26x=220\Rightarrow x=\frac{220}{26}=\frac{110}{13}\)

Vậy hệ pt có nghiệm là \(x=\frac{110}{13};y=7\)

 

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
CW
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
TD
Xem chi tiết
H24
Xem chi tiết
HD
Xem chi tiết
H24
Xem chi tiết
NC
Xem chi tiết