MD

Bài 1. Cho ba đường thẳng
(d1): y = x + 2,
(d2): y = -x - 2,
(d3): y = −2x + 2, (d1) cắt (d2) tại A; (d1) cắt
(d3) tại B, (d2) cắt (d3) tại C.
 a) Xác định tọa độ của các điểm A, B, C.
b) Tính diện tích tam giác ABC.
giúp mik gải bài này vs khocroikhocroi mik đag cần gấp

 

NT
25 tháng 1 2024 lúc 20:11

a: Tọa độ A là:

\(\left\{{}\begin{matrix}x+2=-x-2\\y=x+2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x=-4\\y=x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-2+2=0\end{matrix}\right.\)

Tọa độ B là:

\(\left\{{}\begin{matrix}x+2=-2x+2\\y=x+2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3x=0\\y=x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0+2=2\end{matrix}\right.\)

Tọa độ C là:

\(\left\{{}\begin{matrix}-x-2=-2x+2\\y=-x-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=4\\y=-4-2=-6\end{matrix}\right.\)

Vậy: A(-2;0); B(0;2); C(4;-6)

b: \(AB=\sqrt{\left(0+2\right)^2+\left(2-0\right)^2}=2\sqrt{2}\)

\(AC=\sqrt{\left(4+2\right)^2+\left(-6-0\right)^2}=6\sqrt{2}\)

\(BC=\sqrt{\left(4-0\right)^2+\left(-6-2\right)^2}=\sqrt{4^2+8^2}=4\sqrt{5}\)

Xét ΔABC có \(cosBAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=0\)

=>\(\widehat{BAC}=90^0\)

=>ΔABC vuông tại A

=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\sqrt{2}\cdot6\sqrt{2}=12\)

Bình luận (1)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
DP
Xem chi tiết
NP
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
Ly
Xem chi tiết
VP
Xem chi tiết
TT
Xem chi tiết