Bài 1: Căn bậc hai

NT

Bài 1 1) Tìm điều kiện để căn thức\(\sqrt{-3x+6}\) có nghĩa 2) Tính \(\left(\sqrt{7}-\sqrt{5}\right)^2+2\sqrt{35}\) b)\(3\sqrt{8}-\sqrt{50}-\sqrt{\left(\sqrt{2}-1\right)^2}\) Bài 2 Cho \(M=\frac{\sqrt{a}+3}{\sqrt{a}-2}-\frac{\sqrt{a}-1}{\sqrt{a}+2}+\frac{4\sqrt{a}-4}{4-a}\left(a>0;a\ne4\right)\) Bài 3 1 tính a)\(\sqrt{313^2-312^2}+\sqrt{17^2-8^2}\) b)\(\frac{2+\sqrt{2}}{1+\sqrt{2}}\) 2) giải hệ phương trình\(\left\{{}\begin{matrix}2x+y=3\\3x-2y=1\end{matrix}\right.\) 3) tìm x biết\(\sqrt{9\left(x-1\right)}=21\)

NT
23 tháng 1 2020 lúc 21:55

Bài 1.

1. \(\sqrt{-3x+6}\) có nghĩa khi \(-3x+6\ge0\Leftrightarrow-3x\ge-6\Rightarrow x\le2\)

2.

\( a){\left( {\sqrt 7 - \sqrt 5 } \right)^2} + 2\sqrt {35} = 7 - 2\sqrt {35} + 5 + 2\sqrt {35} = 12\\ b)3\sqrt 8 - \sqrt {50} - \sqrt {{{\left( {\sqrt 2 - 1} \right)}^2}} = 6\sqrt 2 - 5\sqrt 2 - \sqrt 2 + 1 = 1 \)

Bài 2.

\( M = \dfrac{{\sqrt a + 3}}{{\sqrt a - 2}} - \dfrac{{\sqrt a - 1}}{{\sqrt a + 2}} + \dfrac{{4\sqrt a - 4}}{{4 - a}}\\ M = \dfrac{{\left( {\sqrt a + 2} \right)\left( {\sqrt a + 3} \right) - \left( {\sqrt a - 2} \right)\left( {\sqrt a - 1} \right) - \left( {4\sqrt a - 4} \right)}}{{\left( {\sqrt a - 2} \right)\left( {\sqrt a + 2} \right)}}\\ M = \dfrac{{4\sqrt a + 8}}{{\left( {\sqrt a - 2} \right)\left( {\sqrt a + 2} \right)}}\\ M = \dfrac{{4\left( {\sqrt a + 2} \right)}}{{\left( {\sqrt a - 2} \right)\left( {\sqrt a + 2} \right)}}\\ M = \dfrac{4}{{\sqrt a - 2}} \)

Bài 3.

1.

\( a)\sqrt {{{313}^2} - {{312}^2}} + \sqrt {{{17}^2} - {8^2}} = \sqrt {\left( {313 - 312} \right)\left( {313 + 312} \right)} + \sqrt {\left( {17 - 8} \right)\left( {17 + 8} \right)} \\ = \sqrt {625} + \sqrt {9.25} = 25 + 3.5 = 25 + 15 = 40\\ b)\dfrac{{2 + \sqrt 2 }}{{1 + \sqrt 2 }} = \dfrac{{\sqrt 2 \left( {\sqrt 2 + 1} \right)}}{{1 + \sqrt 2 }} = \sqrt 2 \)

2. \(\left\{{}\begin{matrix}2x+y=3\\3x-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x+2y=6\\3x-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x=7\\2x+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

Vậy hệ phương trình có nghiệm duy nhất \(\left(1;1\right)\)

3.

\( \sqrt {9\left( {x - 1} \right)} = 21\\ \Leftrightarrow 3\sqrt {x - 1} = 21\\ \Leftrightarrow \sqrt {x - 1} = 7\\ \Leftrightarrow x - 1 = 49\\ \Leftrightarrow x = 50 \)
Thử lại $x=50$ là nghiệm

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NT
Xem chi tiết
AD
Xem chi tiết
NT
Xem chi tiết
NL
Xem chi tiết
NL
Xem chi tiết
AD
Xem chi tiết
H24
Xem chi tiết
AD
Xem chi tiết
TT
Xem chi tiết