\(B=n^3+17n=n\left(n+17\right)\)
Tích của 2 số cách nhau 17 đơn vị thì chia hết cho 6. Vậy B chia hết cho 6.
Đúng 0
Bình luận (0)
B=n3+17n=n3-n+18n
vì 18n chia hết cho 6 (1)
=> ta phải chứng minh n3-n chia hết cho 6
ta có: n3-n=n(n2-1)=n(n-1)(n+1)
vì tích của 2 số tự nhiên liên tiếp chi hết cho 6 (2)
từ (1) và (2)=> B chia hết cho 6
Đúng 0
Bình luận (0)