TC

b, Cho tổng : \(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{60}\) Chứng minh \(\dfrac{3}{5}< S< \dfrac{4}{5}\)

NT
6 tháng 1 2024 lúc 8:36

\(\dfrac{1}{31}>\dfrac{1}{40}\)

\(\dfrac{1}{32}>\dfrac{1}{40}\)

...

\(\dfrac{1}{40}=\dfrac{1}{40}\)

=>\(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{40}>\dfrac{1}{40}+\dfrac{1}{40}+...+\dfrac{1}{40}=\dfrac{10}{40}=\dfrac{1}{4}\)

\(\dfrac{1}{41}>\dfrac{1}{50}\)

\(\dfrac{1}{42}>\dfrac{1}{50}\)

...

\(\dfrac{1}{50}=\dfrac{1}{50}\)

=>\(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{50}>\dfrac{1}{50}+\dfrac{1}{50}+...+\dfrac{1}{50}=\dfrac{10}{50}=\dfrac{1}{5}\)

\(\dfrac{1}{51}>\dfrac{1}{60}\)

\(\dfrac{1}{52}>\dfrac{1}{60}\)

...

\(\dfrac{1}{60}=\dfrac{1}{60}\)

=>\(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{60}>\dfrac{1}{60}+\dfrac{1}{60}+...+\dfrac{1}{60}=\dfrac{10}{60}=\dfrac{1}{6}\)

=>\(S>\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}=\dfrac{3}{5}\)

\(\dfrac{1}{31}< \dfrac{1}{30}\)

\(\dfrac{1}{32}< \dfrac{1}{30}\)

...

\(\dfrac{1}{40}< \dfrac{1}{30}\)

=>\(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{40}< \dfrac{1}{30}+\dfrac{1}{30}+...+\dfrac{1}{30}=\dfrac{10}{30}=\dfrac{1}{3}\)

\(\dfrac{1}{41}< \dfrac{1}{40}\)

\(\dfrac{1}{42}< \dfrac{1}{40}\)

...

\(\dfrac{1}{50}< \dfrac{1}{40}\)

=>\(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{50}< \dfrac{1}{40}+\dfrac{1}{40}+...+\dfrac{1}{40}=\dfrac{10}{40}=\dfrac{1}{4}\)

\(\dfrac{1}{51}< \dfrac{1}{50}\)

\(\dfrac{1}{52}< \dfrac{1}{50}\)

...

\(\dfrac{1}{60}< \dfrac{1}{50}\)

=>\(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{60}< \dfrac{1}{50}+\dfrac{1}{50}+...+\dfrac{1}{50}=\dfrac{10}{50}=\dfrac{1}{5}\)

=>\(S< \dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}=\dfrac{4}{5}\)

=>\(\dfrac{3}{5}< S< \dfrac{4}{5}\)

Bình luận (0)

Các câu hỏi tương tự
TC
Xem chi tiết
CL
Xem chi tiết
H24
Xem chi tiết
DH
Xem chi tiết
NT
Xem chi tiết
TC
Xem chi tiết
LT
Xem chi tiết
QP
Xem chi tiết
VP
Xem chi tiết