NT

a)\(\sin x+\cos x=\sqrt{2}sin\dfrac{\pi}{12}\)

b)\(\sin2x+\sqrt{3}\cos2x=2\sin\left(x+\dfrac{\pi}{6}\right)\)

NL
7 tháng 9 2022 lúc 16:04

a.

\(\Leftrightarrow\dfrac{1}{\sqrt{2}}sinx+\dfrac{1}{\sqrt{2}}cosx=sin\dfrac{\pi}{12}\)

\(\Leftrightarrow sinx.cos\dfrac{\pi}{4}+cosx.sin\dfrac{\pi}{4}=sin\dfrac{\pi}{12}\)

\(\Leftrightarrow sin\left(x+\dfrac{\pi}{4}\right)=sin\dfrac{\pi}{12}\)

\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{4}=\dfrac{\pi}{12}+k2\pi\\x+\dfrac{\pi}{4}=\dfrac{11\pi}{12}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{6}+k2\pi\\x=\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\)

Bình luận (0)
H24
7 tháng 9 2022 lúc 16:05

`a)sin x +cos x=\sqrt{2}sin` `\pi/12`

`<=>1/\sqrt{2}sin x+1/\sqrt{2}cos x=sin` `\pi/12`

`<=>sin(x+\pi/4)=sin` `\pi/12`

`<=>[(x+\pi/4=\pi/12+k2\pi),(x+\pi/4=[11\pi]/12+k2\pi):}`

`<=>[(x=-\pi/6+k2\pi),(x=[2\pi]/3+k2\pi):}`   `(k in ZZ)`

____________________________________________

`b)sin 2x+\sqrt{3}cos 2x=2sin(x+\pi/6)`

`<=>1/2sin 2x+\sqrt{3}/2 cos 2x=sin(x+\pi/6)`

`<=>sin(2x+\pi/3)=sin(x+\pi/6)`

`<=>[(2x+\pi/3=x+\pi/6+k2\pi),(2x+\pi/3=[5\pi]/6-x+k2\pi):}`

`<=>[(x=-\pi/6+k2\pi),(x=\pi/6+k[2\pi]/3):}`   `(k in ZZ)`

Bình luận (0)
MH
7 tháng 9 2022 lúc 16:05

a) \(\sin x+\cos x=\sqrt{2}\sin\dfrac{\pi}{12}\)

\(\Rightarrow\sqrt{2}\sin\left(x+\dfrac{\pi}{4}\right)=\sqrt{2}\sin\dfrac{\pi}{12}\\ \Rightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{4}=\dfrac{\pi}{12}+k2\pi\\x+\dfrac{\pi}{4}=\dfrac{11\pi}{12}+k2\pi\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{6}+k2\pi\\x=\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\left(k\in Z\right)\)

Bình luận (0)
NL
7 tháng 9 2022 lúc 16:06

b.

\(\Leftrightarrow\dfrac{1}{2}sin2x+\dfrac{\sqrt{3}}{2}cos2x=sin\left(x+\dfrac{\pi}{6}\right)\)

\(\Leftrightarrow sin2x.cos\dfrac{\pi}{3}+cos2x.sin\dfrac{\pi}{3}=sin\left(x+\dfrac{\pi}{6}\right)\)

\(\Leftrightarrow sin\left(2x+\dfrac{\pi}{3}\right)=sin\left(x+\dfrac{\pi}{6}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{\pi}{3}=x+\dfrac{\pi}{6}+k2\pi\\2x+\dfrac{\pi}{3}=\dfrac{5\pi}{6}-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{6}+k2\pi\\3x=\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{6}+k2\pi\\x=\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\end{matrix}\right.\)

Bình luận (0)
MH
7 tháng 9 2022 lúc 16:10

b) \(\sin2x+\sqrt{3}\cos2x=2\sin\left(x+\dfrac{\pi}{6}\right)\)

\(\Rightarrow\dfrac{1}{2}\sin2x+\dfrac{\sqrt{3}}{2}\cos2x=\sin\left(x+\dfrac{\pi}{6}\right)\\ \Rightarrow\sin\left(2x+\dfrac{\pi}{3}\right)=\sin\left(x+\dfrac{\pi}{6}\right)\\ \Rightarrow\left[{}\begin{matrix}2x+\dfrac{\pi}{3}=x+\dfrac{\pi}{6}+k2\pi\\2x+\dfrac{\pi}{3}=-x+\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{6}+k2\pi\\x=\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\end{matrix}\right.\left(k\in Z\right)\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
TB
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
DN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết