\(A=n^2+n+1=n\left(n+1\right)+1\)
Với \(n\inℤ\)thì \(n\left(n+1\right)\)là tích của hai số nguyên liên tiếp nên chia hết cho \(2\).
Do đó \(n\left(n+1\right)\)là số chẵn nên \(A=n\left(n+1\right)+1\)là số lẻ.
Do đó \(A\)không chia hết cho \(4\).
\(A=n^2+n+1=n\left(n+1\right)+1\)
Với \(n\inℤ\)thì \(n\left(n+1\right)\)là tích của hai số nguyên liên tiếp nên chia hết cho \(2\).
Do đó \(n\left(n+1\right)\)là số chẵn nên \(A=n\left(n+1\right)+1\)là số lẻ.
Do đó \(A\)không chia hết cho \(4\).
a) Cho A = 119 + 118 + 117 +…+11 + 1. Chứng minh rằng A ⋮ 5
b) Chứng minh rằng với mọi số tự nhiên n thì n2 + n + 1 không chia hết cho 4.
chứng minh
a) n3 – n + 4 không chia hết cho 3 ;
b) n2 + 11n + 39 không chia hết cho 49 ;
c) n2 + 3n + 5 không chia hết cho 121.
Chứng minh rằng: A = n 2 + n + 1 không chia hết cho 2, với ∀ n ∈ N
Cho A=(n2+1)*(n2+4)
Chứng minh A với mọi n thuộc N
Tìm điều kiện n chứng minh A chia hết cho 120
Cho n thuộc N. Chứng minh rằng n2+n+1 không chia hết cho 2 và không chia hết cho 9
câu a: chứng tỏ rằng n2 + n + 1 không chia hết cho 2
câu b: chứng tỏ rằng n.(n+1) .(5n+1) chia hết cho 6
Cho A = ( n-1)(n+1)(n2+1)(n thuộcZ)
Chứng minh A chia hết cho 3
Bài 1 : Chứng minh :
a) (3n+1) . (n-1)-n.(3n+1)+7 chia hết cho 3
.(n+3)-2n+3 chia hết cho 9
Bài 2 : Tìm x , y thuộc Z , để :
a)x.y=-7
b)(x+1).(y+2)=7
c) (x+1).(y+3)-4=3
Bài 3 :Tìm x thuộc Z , để :
a)x-4 chia hết cho x-1
b)3x+2 chia hết cho 2x-1
Bài 5 : Chứng minh : Với mọi a thuộc Z , thì :
a (a-1).(a+2)+12 không là Bội của 9
b)49 không là Ước của (a+2).(a+9)+21
Cho n là một số không chia hết cho 3. Chứng minh rằng n 2 chia cho 3 dư 1