Bài 1: Căn bậc hai

ND

\(A=\left(\sqrt{x-4\sqrt{2}}-\sqrt{x+4\sqrt{2}}\right)\sqrt{x+\sqrt{x^2-32}}\) với \(x\ge4\sqrt{2}\)

AH
17 tháng 9 2019 lúc 13:59

Lời giải:

\(A\sqrt{2}=(\sqrt{x-4\sqrt{2}}-\sqrt{x+4\sqrt{2}})\sqrt{2x+\sqrt{(x-4\sqrt{2})(x+4\sqrt{2})}}\)

\(=(\sqrt{x-4\sqrt{2}}-\sqrt{x+4\sqrt{2}})\sqrt{(\sqrt{x-4\sqrt{2}}+\sqrt{x+4\sqrt{2}})^2}\)

\(=(\sqrt{x-4\sqrt{2}}-\sqrt{x+4\sqrt{2}})(\sqrt{x-4\sqrt{2}}+\sqrt{x+4\sqrt{2}})\)

\(=(\sqrt{x-4\sqrt{2}})^2-(\sqrt{x+4\sqrt{2}})^2=(x-4\sqrt{2})-(x+4\sqrt{2})=-8\sqrt{2}\)

Bình luận (0)
AH
29 tháng 9 2019 lúc 0:30

Lời giải:

\(A\sqrt{2}=(\sqrt{x-4\sqrt{2}}-\sqrt{x+4\sqrt{2}})\sqrt{2x+\sqrt{(x-4\sqrt{2})(x+4\sqrt{2})}}\)

\(=(\sqrt{x-4\sqrt{2}}-\sqrt{x+4\sqrt{2}})\sqrt{(\sqrt{x-4\sqrt{2}}+\sqrt{x+4\sqrt{2}})^2}\)

\(=(\sqrt{x-4\sqrt{2}}-\sqrt{x+4\sqrt{2}})(\sqrt{x-4\sqrt{2}}+\sqrt{x+4\sqrt{2}})\)

\(=(\sqrt{x-4\sqrt{2}})^2-(\sqrt{x+4\sqrt{2}})^2=(x-4\sqrt{2})-(x+4\sqrt{2})=-8\sqrt{2}\)

Bình luận (0)

Các câu hỏi tương tự
NB
Xem chi tiết
NU
Xem chi tiết
AD
Xem chi tiết
LM
Xem chi tiết
AD
Xem chi tiết
TT
Xem chi tiết
NL
Xem chi tiết
MT
Xem chi tiết
CH
Xem chi tiết