Lời giải:
\(A\sqrt{2}=(\sqrt{x-4\sqrt{2}}-\sqrt{x+4\sqrt{2}})\sqrt{2x+\sqrt{(x-4\sqrt{2})(x+4\sqrt{2})}}\)
\(=(\sqrt{x-4\sqrt{2}}-\sqrt{x+4\sqrt{2}})\sqrt{(\sqrt{x-4\sqrt{2}}+\sqrt{x+4\sqrt{2}})^2}\)
\(=(\sqrt{x-4\sqrt{2}}-\sqrt{x+4\sqrt{2}})(\sqrt{x-4\sqrt{2}}+\sqrt{x+4\sqrt{2}})\)
\(=(\sqrt{x-4\sqrt{2}})^2-(\sqrt{x+4\sqrt{2}})^2=(x-4\sqrt{2})-(x+4\sqrt{2})=-8\sqrt{2}\)
Lời giải:
\(A\sqrt{2}=(\sqrt{x-4\sqrt{2}}-\sqrt{x+4\sqrt{2}})\sqrt{2x+\sqrt{(x-4\sqrt{2})(x+4\sqrt{2})}}\)
\(=(\sqrt{x-4\sqrt{2}}-\sqrt{x+4\sqrt{2}})\sqrt{(\sqrt{x-4\sqrt{2}}+\sqrt{x+4\sqrt{2}})^2}\)
\(=(\sqrt{x-4\sqrt{2}}-\sqrt{x+4\sqrt{2}})(\sqrt{x-4\sqrt{2}}+\sqrt{x+4\sqrt{2}})\)
\(=(\sqrt{x-4\sqrt{2}})^2-(\sqrt{x+4\sqrt{2}})^2=(x-4\sqrt{2})-(x+4\sqrt{2})=-8\sqrt{2}\)