P/s: Không chắc lắm nha!
P/s: Không chắc lắm nha!
A=\(\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3\left(\sqrt{x}+3\right)}{x-9}\right)\)\(:\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)(với \(x\ge0;x\ne9\))
a) Rút gọn A
b) Tìm x để A<\(-\)1
Rút gọn:
a) \(\frac{a-b}{\sqrt{a}-\sqrt{b}}\)-\(\frac{\sqrt{a^3}-\sqrt{b^3}}{a-b}\)(\(a\ge0\),\(b\ge0\),\(a\ne b\))
b)\(\frac{\left(\sqrt{a}-\sqrt{b}\right)^2-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}\)\(\left(a>0,b>0,a\ne b\right)\)
C)\(\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right)\div\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)\(\left(a>0,a\ne1,a\ne4\right)\)
d)\(\left(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right)\)\(\left(\frac{\sqrt{a}+\sqrt{b}}{a-b}\right)^2\)\(\left(a>0,b>0,a\ne b\right)\)
e)\(\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{9-x}\right)\):\(\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\)\(\left(x>0,x\ne9\right)\)
bài 1: rút gọn biểu thức
a) \(\sqrt{48}-6\sqrt{\frac{1}{3}}+\frac{\sqrt{3}-3}{\sqrt{3}}\)
b)\(\left(\frac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\frac{5}{\sqrt{5}}\right):\left(\frac{1}{\sqrt{5}-\sqrt{2}}\right)\)
c) \(\sqrt{7-4\sqrt{3}}+\sqrt{\left(1+\sqrt{3}\right)^2}\)
d) \(5\sqrt{\frac{1}{5}}+\frac{1}{3}\sqrt{45}+\frac{5-\sqrt{5}}{\sqrt{5}}\)
bài 2: giải phương trình
c)\(\sqrt{4x+4}-\sqrt{9x+9}-8\sqrt{\frac{x+1}{16}}=5\)
bài 3 a)tìm điều kiện để căn thức bậc 2 có nghĩa \(\sqrt{\frac{-5}{2x+1}}\)
b) \(\sqrt[3]{64}+\sqrt[3]{-27}-\sqrt[3]{-4}.\sqrt[3]{2}\)
bài 4 cho biểu thức Q= \(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{x-1}\) với x>0 và x khác 1
a) rút gọn Q b) tính giá trị của Q khi x= 9
bài 5 :cho biểu thức P= \(\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\right):\left(\frac{1}{\sqrt{x}+1}+\frac{2}{x-1}\right)\)
a) tìm điều kiện của x để biểu thức P xác định
b) rút gọn P
c) tìm giá trị của x để P< 0
1. Rút gọn biểu thức: A= \(\left(\sqrt{7-4\sqrt{3}}-\frac{\sqrt{15}-3}{\sqrt{3}}\right).\left(2+\sqrt{5}\right)\)
2. Cho biểu thức: M= \(\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}-1}{2}\)( với x \(\ge\)0, x\(\ne\)1)
a, Rút gọn biểu thức M
b, Tìm x để M=2
3.
a, Rút gọn biểu thức: \(\frac{4}{\sqrt{5}-\sqrt{3}}-\sqrt{20}-\sqrt{27}\)
b, Với a > 1, cho biểu thức P= \(\left(\frac{2}{\sqrt{a+1}}+\sqrt{a-1}\right):\left(\frac{2}{\sqrt{a^2-1}}+1\right)\)
Rút gọn biểu thức P, tìm giá trị của a để P = 2
P=\(\left(\frac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
a, Rút gọn P
b, Tính P khi \(x=4-2\sqrt{3}\)
c, Tìm x để P<\(\frac{1}{2}\)
d, Tính GTNN của P
1 . Rút gọn biểu thức
A= \(\frac{1}{2}\sqrt{8}+\frac{\sqrt{6}-\sqrt{10}}{\sqrt{5}-\sqrt{3}}+\frac{\sqrt{88}}{\sqrt{22}}-2\sqrt{\frac{1}{2}}\)
2. Cho biểu thức :
P = \(\left(\frac{1}{\sqrt{x}+1}+\frac{x+\sqrt{x}+2}{x-1}\right):\frac{1}{\sqrt{x}-1}\left(x\ge0;x\ne1\right)\)
a, Chứng minh P =\(\sqrt{x}+1\)
b, Tìm giá trị của x để P = 2
các bạn ơi ! giúp mik với đi !!
a) Rút gọn biểu thức:\(\left(\frac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\frac{\sqrt{5}-5}{1-\sqrt{5}}\right):\frac{1}{\sqrt{2}-\sqrt{5}}\)
b) Tìm giá trị nhỏ nhất của biểu thức B=\(x^2-x\sqrt{3}+1\)
cho biểu thức P=\(\left(\frac{\sqrt{x}+2}{\sqrt{x}-3}+\frac{3}{x-5\sqrt{x}+6}\right):\left(\frac{x+2}{\sqrt{x-3}}-\frac{x^2-\sqrt{x}-6}{\left(x-2\right)\left(\sqrt{x}-3\right)}\right)\)
a) rút gọn P
b) tìm x để P≤-2
c) tìm giá trị của x để 2(x-4)P=3\(\sqrt{x^3+8}\)
Cho biểu thức
a) rút gọn C
b) tìm x sao cho C < -1
C =
\(\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{9-x}\right):\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\)