cho tam giác ABC đường cao BE,CF ∩ tại H. Vẽ qua B,C các đường thẳng ⊥ AB,AC cắt nhau ở D, gọi I trung điểm BC, K trung điểm AH, O trung điểm AD
a)CMR H,I,D thẳng hàng
b)CMR AH=2OI
c)CMR BF.BA+CE.CA=BH.BE+CH.CF
d)CMR \(\widehat{KEI}\)=\(\widehat{KFI}\)
Cho tam giác ABC vuông tại A(AC>AB). Vẽ đường cao AH(H∈BC). Trên tia đối tia BC lấy K sao cho KH=HA. Qua K kẻ đường thẳng song song với AH cắt đường thẳng AC tại P. Gọi Q là trung điểm BP.
a, CMR: \(\Delta BHQ\sim\Delta BPC\)
b, AQ cắt BC tại I. CMR: \(\dfrac{AH}{HB}-\dfrac{BC}{IB}=1\)
Giúp minh bài này với ạ
Cho DABC có H là trực tâm. Các đường vuông góc với AB tại B, vuông góc với AC tại C cắt nhau tại D.
a) CMR: góc BHC = góc BDC
b) Gọi M là trung điểm của BC. Cmr: H,M,D thẳng hàng.
c) Gọi O là trung điểm của AD. Cmr: OM = 1/2 AH
Cho tam giác ABC vuông tại A(AC>AB). Vẽ đường cao AH(H∈BC). Trên tia đối tia BC lấy K sao cho KH=HA. Qua K kẻ đường thẳng song song với AH cắt đường thẳng AC tại P. Gọi Q là trung điểm BP. AQ cắt BC tại I. CMR: \(\dfrac{AH}{HB}-\dfrac{BC}{IB}=1\)
Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR: góc EMD = 3 góc AEM
Bìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I thuộc BC). CMR: a) I là trung điểm BC
b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB, AC. Gọi I là trung điểm của BC. CMR: AI vuông góc với EF.
Bài 4: Cho tam giác ABC cân tại A . D bất kì thuộc BC . Qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt tại E,F . Gọi I,K lần lượt là trung điểm của BE và CF .
a) CMR: AKDI là hình bình hành
b) Nêu thêm điều kiện của tam giác ABC và của điểm D để DIAK là hình vuông
Bai 1 : Cho hình bình hành ABCD ; góc BAD = 120 độ ; AB = 2 AD
a) CMR: Tia phân giác của góc ADC đi qua trung điểm E của AB .
b) Gọi F là trung điểm DC . CMR tam giác ADF đều và AD vuông góc với AC
Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR: góc EMD = 3 góc AEM
Bìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I \(\in\)BC). CMR: a) I là trung điểm BC
b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB, AC. Gọi I là trung điểm của BC. CMR: AI vuông góc với EF.
Bài 4: Cho tam giác ABC cân tại A . D bất kì thuộc BC . Qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt tại E,F . Gọi I,K lần lượt là trung điểm của BE và CF .
a) CMR: AKDI là hình bình hành
b) Nêu thêm điều kiện của tam giác ABC và của điểm D để DIAK là hình vuông
1. Cho hình chữ nhật ABCD, M là trung điểm BC, AM cắt DC tại E.
a/ chứng minh tứ giác ABEC là hình bình hành
b/ Qua D vẽ đường thẳng song song với BE, đường này cắt BC tại I. Cmr tứ giác BEID là hình thoi.
c/Gọi O là giao điểm của AC và BD, K là trung điểm của IE. Cmr C là trung điểm của OK.
2. Cho tam giác ABC nhọn (AB < AC), trực tâm H. Gọi M là trung điểm của BC, K là điểm đối xứng với H qua M.
a/ Cmr BHCK là hình bình hành.
b/ Cmr BK vuông góc với AB, Ck vuông góc với AC.
c/ Gọi i là điểm đối xứng H qua BC. Cmr BIKC là hình thang cân.
d/ BK cắt HI tại G. Tìm điều kiện của tam giác ABC để GHCK là hình thang cân.
chiều mình học rồi ạ.
Cho tam giác ABC có các góc đều nhọn các đường cao AD,BE,CF cắt nhau tại H cmr
a,cmr:tam giác AFE ~tam giác ACB
b,BF.BA+CE.CA=BC^2
c, AD.HD(BC^2)/4
d, Gọi I,K,Q.R lần lượt là chân các đường cao hạ từ E xuống AB,AD,CF,BC CM: 4 ĐIỂM I,K,Q.R cùng nằm trên 1 đường thẳng
đang cần gấp câu c, d nhé
Cho tam giác ABC vuông tại A có AB<AC. đường cao AH (H thuộc BC) trên tia HC lấy điểm D sao cho HD =HA. Đường thẳng qua D vuông góc với BC , cắt AC tại E.
a CMR: BE.AC=AD.BC
b; Gọi M là trung điểm của BE, CMR: tam giác BHM đồng dạng với tam giác BEC và tính số đo góc AHM.
Giúp vs mik đang cần gấp