HB

Ai giúp mình bài 1 vs ạ

AH
12 tháng 7 2021 lúc 17:13

Lời giải:

ĐKXĐ: $x\neq \pm 3; x\neq 0$

a. \(A=\left[\frac{-(x-3)}{x+3}.\frac{(x+3)^2}{(x-3)(x+3)}+\frac{x}{x+3}\right].\frac{x+3}{3x^2}\)

\(=\left(-1+\frac{x}{x+3}\right).\frac{x+3}{3x^2}=\frac{-3}{x+3}.\frac{x+3}{3x^2}=\frac{-1}{x^2}\)

b. Với $x=\frac{-1}{2}$ thì $x^2=\frac{1}{4}$

$\Rightarrow A=\frac{-1}{\frac{1}{4}}=-4$

c.

Với $x\neq 0, \pm 3$ thì $\frac{1}{x^2}>0\Leftrightarrow A=\frac{-1}{x^2}< 0$ với mọi $x\neq 0; x\neq \pm 3$

 

Bình luận (0)
NT
12 tháng 7 2021 lúc 23:21

a) Ta có: \(A=\left(\dfrac{3-x}{x+3}\cdot\dfrac{x^2+6x+9}{x^2-9}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)

\(=\left(\dfrac{-\left(x-3\right)}{x+3}\cdot\dfrac{\left(x+3\right)^2}{\left(x+3\right)\left(x-3\right)}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)

\(=\left(\dfrac{-x-3+x}{x+3}\right)\cdot\dfrac{x+3}{3x^2}\)

\(=-\dfrac{1}{x^2}\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
PD
Xem chi tiết
LT
Xem chi tiết
DH
Xem chi tiết
LN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
LM
Xem chi tiết