L2

\(A=\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}+\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}+\dfrac{x+1}{\sqrt{x}}\)

Thu gọn và tìm x để A-|A|=0

AT
30 tháng 7 2021 lúc 16:20

\(A=\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}+\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}+\dfrac{x+1}{\sqrt{x}}\left(x>0,x\ne1\right)\)

\(=\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}+\dfrac{x+1}{\sqrt{x}}\)

\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}+\dfrac{x-\sqrt{x}+1}{\sqrt{x}}+\dfrac{x+1}{\sqrt{x}}=\dfrac{3x+3}{\sqrt{x}}\)

\(A-\left|A\right|=0\Rightarrow A=\left|A\right|\Rightarrow\left[{}\begin{matrix}A=A\\A=-A\end{matrix}\right.\)

mà \(x>0\Rightarrow A>0\Rightarrow A=A\) (luôn đúng với mọi \(x\in R\) )

 

Bình luận (0)
NT
31 tháng 7 2021 lúc 0:54

Ta có: \(A=\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}+\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}+\dfrac{x+1}{\sqrt{x}}\)

\(=\dfrac{x+\sqrt{x}+1+x-\sqrt{x}+1+x+1}{\sqrt{x}}\)

\(=\dfrac{3x+3}{\sqrt{x}}\)

Để A-|A|=0 thì A=|A|

\(\Leftrightarrow3x+3\ge0\)

hay \(x\ge-1\)

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
LP
Xem chi tiết
MB
Xem chi tiết
HP
Xem chi tiết
H24
Xem chi tiết
HT
Xem chi tiết
NH
Xem chi tiết
2S
Xem chi tiết
MB
Xem chi tiết
LM
Xem chi tiết