TL

\(\)A=\(\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}+\dfrac{3-11x}{9-x^2}\)với B=\(\dfrac{x-3}{x+1}\)

a) rút gọn A

b)  P=A.B,tìm x để P=\(\dfrac{9}{2}\)

c) tìm x để B<1

NT
27 tháng 8 2021 lúc 14:51

a: Ta có: \(A=\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}+\dfrac{3-11x}{9-x^2}\)

\(=\dfrac{2x^2-6x+x^2+4x+3-3+11x}{\left(x+3\right)\left(x-3\right)}\)

\(=\dfrac{3x^2+9x}{\left(x+3\right)\left(x-3\right)}\)

\(=\dfrac{3x}{x-3}\)

b: Ta có P=AB

nên \(P=\dfrac{3x}{x-3}\cdot\dfrac{x-3}{x+1}=\dfrac{3x}{x+1}\)

Để \(P=\dfrac{9}{2}\) thì 9x+9=6x

\(\Leftrightarrow3x=-9\)

hay x=-3(loại)

Bình luận (0)
H24
27 tháng 8 2021 lúc 14:54

a) \(A=\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}+\dfrac{3-11x}{9-x^2}\\ \Rightarrow A=\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}-\dfrac{3-11x}{\left(x-3\right)\left(x+3\right)}\)

    \(\Rightarrow A=\dfrac{2x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{\left(x+1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{3-11x}{\left(x-3\right)\left(x+3\right)}\)

    \(\Rightarrow A=\dfrac{2x\left(x-3\right)+\left(x+1\right)\left(x+3\right)-3+11x}{\left(x-3\right)\left(x+3\right)}\)

    \(\Rightarrow A=\dfrac{2x^2-6x+x^2+4x+3-3+11x}{\left(x-3\right)\left(x+3\right)}\)

    \(\Rightarrow A=\dfrac{3x^2+9x}{\left(x-3\right)\left(x+3\right)}\)

    \(\Rightarrow A=\dfrac{3x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\)

    \(\Rightarrow A=\dfrac{3x}{x-3}\)

Bình luận (0)
NT
27 tháng 8 2021 lúc 15:02

a. ĐKXĐ: \(x\ne\pm3\)

\(A=\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}+\dfrac{3-11x}{9-x^2}\)

\(=\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}-\dfrac{3-11x}{x^2-9}\)

\(=\dfrac{2x\left(x-3\right)+\left(x+1\right)\left(x+3\right)-\left(3-11x\right)}{x^2-9}\)

\(=\dfrac{2x^2-6x+x^2+4x+3-3+11x}{x^2-9}\)

\(=\dfrac{3x^2+9x}{x^2-9}=\dfrac{3x\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}=\dfrac{3x}{x-3}\)

b. \(P=A.B\)

\(\Rightarrow P=\dfrac{3x}{x-3}.\dfrac{x-3}{x+1}=\dfrac{3x}{x+1}\) 

Ta có \(P=\dfrac{9}{2}\) 

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\\dfrac{3x}{x+1}=\dfrac{9}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\6x=9x+9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\-3x=9\end{matrix}\right.\) \(\Leftrightarrow x=-3\)

c. \(B< 1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\\dfrac{x-3}{x-1}< 1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\\dfrac{x-3}{x-1}-1< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\\dfrac{2}{1-x}< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\1-x< 0\end{matrix}\right.\) \(\Leftrightarrow x>1\)

Bình luận (0)
NT
28 tháng 8 2021 lúc 0:56

c: Để B<1 thì B-1<0

\(\Leftrightarrow\dfrac{x-3-x-1}{x+1}< 0\)

\(\Leftrightarrow x+1>0\)

hay x>-1

Bình luận (0)