H24

a,b,c là các số thực dương thỏa mãn a+b+c=3. Tìm min \(P=\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}+\dfrac{1}{c^2+1}\)

NL
14 tháng 1 2024 lúc 21:15

Đây là bài sử dụng Cô-si ngược dấu đặc trưng:

\(\dfrac{1}{a^2+1}=\dfrac{a^2+1-a^2}{a^2+1}=1-\dfrac{a^2}{a^2+1}\ge1-\dfrac{a^2}{2a}=1-\dfrac{a}{2}\)

Tương tự: \(\dfrac{1}{b^2+1}\ge1-\dfrac{b}{2}\)

\(\dfrac{1}{c^2+1}\ge1-\dfrac{c}{2}\)

Cộng vế:

\(P\ge3-\dfrac{a+b+c}{2}=\dfrac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
VL
Xem chi tiết
HM
Xem chi tiết
H24
Xem chi tiết
DH
Xem chi tiết
Xem chi tiết
MN
Xem chi tiết
BB
Xem chi tiết
NA
Xem chi tiết