Lời giải:
Gọi biểu thức trên là $A$
$4A=4a^2+4ab+4b^2-12a-12b+8064$
$=(4a^2+4ab+b^2)+3b^2-12a-12b+8064$
$=(2a+b)^2-6(2a+b)+(3b^2-6b)+8064$
$=(2a+b)^2-6(2a+b)+9+3(b^2-2b+1)+8052$
$=(2a+b-3)^2+3(b-1)^2+8052\geq 8052$
$\Rightarrow A\geq 2013$
Vậy $A_{\min}=2013$