Cho x, y thỏa mãn : \(\sqrt{x^2+11}+\sqrt{x-2018}+x^2=\sqrt{y^2+11}+\sqrt{y-2018}+y^2\)
Tính \(M=x^{11}-y^{2018}\)
Cho biểu thức: A=\(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}+\frac{3-11\sqrt{x}}{9-x},B=\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
a,Tính giá trị của B tại x=36
b,Rút gọn A
1, tìm x, y biết √ x+y -2 = √x +√y -2
2, Cho biểu thức sau A= \(\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
a, tìm điều kiện của x để A có nghĩa
b, chứng minh rằng: A = \(\frac{17}{\sqrt{x}+3}-5\)
c, so sánh A với \(\frac{2}{3}\)
A=\(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}+\frac{3-11\sqrt{x}}{9-x},B=\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
a,rút gọn A
b,Tìm số nguyên x để gt biểu thức P=A.B là số nguyên
\(11\sqrt{x}+11\sqrt{y}-x-\sqrt{xy}\)
Giải phương trình:
a,\(\sqrt{x+6-4\sqrt{x+2}}+\sqrt{x+11-6\sqrt{x+2}}=1\)
b,\(\sqrt{x+2-4\sqrt{x-2}}+\sqrt{x+7-6\sqrt{x-2}}=1\)
c, \(\sqrt{x-7}+\sqrt{9-x}=x^2-16x+66\)
x^2 - 2 √11 x +11 =0
\(\frac{2\sqrt{x}}{\sqrt{x}-3}-\frac{11\sqrt{x}-3}{9-x}+\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
Rút gọn
Giải phương trình :
a,\(\sqrt{x-2-2\sqrt{x-3}}-\sqrt{x+1-4\sqrt{x-3}}=2\)
b,\(\sqrt{2x-1+2\sqrt{x^2-x}}+\sqrt{2x-1-2\sqrt{x^2-x}}=5\) với \(x\frac{>}{ }1\)
c,\(\sqrt{x+6-4\sqrt{x+2}}+\sqrt{x+11-6\sqrt{x+2}}=1\)
1. Cho biểu thức : A = \(\left(1-\dfrac{\sqrt{x}}{1+\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\).
a) Rút gọn A.
b) Tìm x để A < 0.
2. Cho biểu thức: B = \(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{3+\sqrt{x}}\).
a) Rút gọn B.
b) Tìm x để B = \(\dfrac{1}{2}\)
c) Tìm x để B > 0.
3. a) Tìm GTLN của biểu thức: A = \(\dfrac{1}{x-\sqrt{x}+1}\).
b) Tìm GTNN của biểu thức: B = \(\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\).