Ta có: (x-2)(y+3)=6
Trường hợp 1: \(\left\{{}\begin{matrix}x-2=1\\y+3=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=3\end{matrix}\right.\)
Trường hợp 2: \(\left\{{}\begin{matrix}x-2=6\\y+3=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=-2\end{matrix}\right.\)
Trường hợp 3: \(\left\{{}\begin{matrix}x-2=2\\y+3=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\)
Trường hợp 4: \(\left\{{}\begin{matrix}x-2=3\\y+3=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=-1\end{matrix}\right.\)
Trường hợp 5: \(\left\{{}\begin{matrix}x-2=-1\\y+3=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-9\end{matrix}\right.\)
Trường hợp 6: \(\left\{{}\begin{matrix}x-2=-6\\y+3=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=-4\end{matrix}\right.\)
Trường hợp 7: \(\left\{{}\begin{matrix}x-2=-2\\y+3=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=-6\end{matrix}\right.\)
Trường hợp 8: \(\left\{{}\begin{matrix}x-2=-3\\y+3=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-5\end{matrix}\right.\)