Ẩn danh

loading...  a, rút gon H

B, loading...  c, chứng minh H ≤ 1

NT
26 tháng 10 lúc 11:23

a: \(\left(\dfrac{\sqrt{x}-\sqrt{y}}{1+\sqrt{xy}}+\dfrac{\sqrt{x}+\sqrt{y}}{1-\sqrt{xy}}\right)\)

\(=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(1-\sqrt{xy}\right)+\left(\sqrt{x}+\sqrt{y}\right)\left(1+\sqrt{xy}\right)}{\left(1+\sqrt{xy}\right)\left(1-\sqrt{xy}\right)}\)

\(=\dfrac{\sqrt{x}-x\sqrt{y}-\sqrt{y}+y\sqrt{x}+\sqrt{x}+x\sqrt{y}+\sqrt{y}+y\sqrt{x}}{1-xy}\)

\(=\dfrac{2\sqrt{x}+2y\sqrt{x}}{1-xy}\)

\(H=\left(\dfrac{\sqrt{x}-\sqrt{y}}{1+\sqrt{xy}}+\dfrac{\sqrt{x}+\sqrt{y}}{1-\sqrt{xy}}\right):\left(\dfrac{x+y+2xy}{1-xy}+1\right)\)

\(=\dfrac{2\sqrt{x}+2y\sqrt{x}}{1-xy}:\dfrac{x+y+2xy+1-xy}{1-xy}\)

\(=\dfrac{2\sqrt{x}\left(y+1\right)}{1-xy}\cdot\dfrac{1-xy}{x+y+xy+1}\)

\(=\dfrac{2\sqrt{x}\left(y+1\right)}{\left(x+1\right)\left(y+1\right)}=\dfrac{2\sqrt{x}}{x+1}\)

b: Thay \(x=\dfrac{2}{2+\sqrt{3}}=2\left(2-\sqrt{3}\right)=4-2\sqrt{3}\) vào H, ta được:

\(H=\dfrac{2\cdot\sqrt{4-2\sqrt{3}}}{4-2\sqrt{3}+1}=\dfrac{2\left(\sqrt{3}-1\right)}{5-2\sqrt{3}}=\dfrac{2\sqrt{3}-2}{5-2\sqrt{3}}=\dfrac{6\sqrt{3}+2}{13}\)

Bình luận (0)