Bài 8: Rút gọn biểu thức chứa căn bậc hai

QN

A = \(\dfrac{1}{\sqrt{x}+2}+\dfrac{1}{x-\sqrt{x}-6}-\dfrac{\sqrt{x}-2}{3-\sqrt{x}}\)

1) Rút gọn A

2)Tìm GTKN của A

NM
26 tháng 8 2021 lúc 9:20

\(1,A=\dfrac{1}{\sqrt{x}+2}+\dfrac{1}{x-\sqrt{x}+6}-\dfrac{\sqrt{x}-2}{3-\sqrt{x}}\left(x\ge0;x\ne9\right)\\ A=\dfrac{\sqrt{x}-3+1+\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\\ A=\dfrac{\sqrt{x}-2+x-4\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\\ A=\dfrac{x-3\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\\ A=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)

\(2,\) Ta có \(\left\{{}\begin{matrix}\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)\ge\left(0-1\right)\left(0-2\right)=2\\\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)\ge\left(0+2\right)\left(0-3\right)=-6\end{matrix}\right.\)

\(\Rightarrow A=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\ge-\dfrac{2}{6}=-\dfrac{1}{3}\)

Vậy GTNN của \(A\) là \(-\dfrac{1}{3}\)

Dấu \("="\Leftrightarrow x=0\)

Bình luận (0)