\(A=3+3^2+....+3^{99}\)
\(3A=3^2+3^3+...+3^{100}\)
\(3A-A=3^2+3^3+...+3^{100}-3-3^2-...-3^{99}\)
\(2A=3^{100}-3\)
\(A=\dfrac{3^{100}-3}{2}\)
\(\Rightarrow2A+3=9^{2x+6}\)
\(\Rightarrow2\cdot\dfrac{3^{100}-3}{2}+3=\left(3^2\right)^{2x+6}\)
\(\Rightarrow3^{100}-3+3=3^{2\left(2x+6\right)}\)
\(\Rightarrow3^{100}=3^{4x+12}\)
\(\Rightarrow4x+12=100\)
\(\Rightarrow4x=88\)
\(\Rightarrow x=22\)