\(\Leftrightarrow3A=3^2+3^3+...+3^{2022}\\ \Leftrightarrow3A-A=3^2+3^3+...+3^{2022}-3-3^2-...-3^{2021}\\ \Leftrightarrow2A=3^{2022}-3\\ \Leftrightarrow A=\dfrac{3^{2022}-3}{2}\)
\(=\dfrac{3^{2022}-3}{2}\)
\(\Leftrightarrow3A=3^2+3^3+...+3^{2022}\\ \Leftrightarrow3A-A=3^2+3^3+...+3^{2022}-3-3^2-...-3^{2021}\\ \Leftrightarrow2A=3^{2022}-3\\ \Leftrightarrow A=\dfrac{3^{2022}-3}{2}\)
\(=\dfrac{3^{2022}-3}{2}\)
A = 3 + 32 + 33 +…. + 32021 =
Cho A = 1 + 3 + 32 + 33 +.......+ 32021 , B = 32022 : 2. Tính: B - A
A=1+31+32+33+...+32021 ./ ctỏ Achia hết cho 4
bài 1
tìm các số nguyên x,y biết : xy + 3x + 3y = -16
bài 2
cho S = 3+32+33+...+32021. Chứng tỏ rằng 2S+3 viết được dưới dạng bình phương của một số tự nhiên
bài 3
cho A = 4+42+43+...+423+424. Chứng minh : A⋮20,A⋮21,A⋮420.
Tính S=32024-32023+32022-32021+...+32-3
Thu gọn C, biết :
C = 32023 - 32022 + 32021 - 32020 + 32019 - ... - 32 + 3.
Giúp mình với!
g/ 12x – 33 = 32021 : 32020 giúp mình với !
Cho B= 1+3+32+….+32021 C= 32022 : 2 Tính C - B ai giúp mình vs
Bài 1: tính tổng dãy số sau:
A = 1+3+32+33+...+399+3100
Các bạn xem bài giải của mình nếu đúng tick cho mình nhé!
Giải
Ta có: 3A = 3.(1+3+32+33+...+399+3100)(1+3+32+33+...+399+3100)
3A = 3+32+33+...+3100+31013+32+33+...+3100+3101
Suy ra: 3A – A = (3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)(3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)
2A = 3101−13101−1
⇒⇒ A = 3101−123101−12
Vậy A = 3101−12