\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{11}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{13}=\dfrac{12}{13}\)
\(B=\dfrac{2}{20}+\dfrac{2}{30}+...+\dfrac{2}{210}\)
\(=2\left(\dfrac{1}{20}+\dfrac{1}{30}+...+\dfrac{1}{210}\right)\)
\(=2\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-...+\dfrac{1}{14}-\dfrac{1}{15}\right)\)
\(=2\cdot\dfrac{11}{60}=\dfrac{11}{30}\)