a: \(=1-cos^2a=sin^2a\)
b: \(=1+1=2\)
c: \(=sina\left(1-cos^2a\right)=sina\cdot sin^2a=sin^3a\)
d: \(=cos^2a\left(1+tan^2a\right)=cos^2a\cdot\dfrac{1}{cos^2a}=1\)
a: \(=1-cos^2a=sin^2a\)
b: \(=1+1=2\)
c: \(=sina\left(1-cos^2a\right)=sina\cdot sin^2a=sin^3a\)
d: \(=cos^2a\left(1+tan^2a\right)=cos^2a\cdot\dfrac{1}{cos^2a}=1\)
Cho tan a=1/2 . tính \(M=\dfrac{\cos a-sina}{\cos a+\sin a}\)
a) Biết sin a =\(\dfrac{2}{3}\).Tính cos a,tan a,cot a
b)Biết cos a =\(\dfrac{1}{5}\).Tính sin a, tan a,cot a
c)Biết tan a = 2.Tính sin a,cos a ,cot a.
Cho 0<a<90.CM các hệ sau
a)\(\frac{sin^2a-cos^2a+cos^4a}{cos^2a-sin^2a+sin^4a}=tan^4a\)
b)\(\frac{1-4sin^2a.cos^2a}{\left(sina+cosa\right)^2}=\left(sina-cosa\right)^2\)
Bài 1: không dùng bảng số, máy tính bỏ túi hãy tính giá trị của các biểu thức
a, M=sin242 + sin243 + sin244 + sin245 + sin246 + sin247 + sin248
b, cos215 - cos225 + cos235 - cos245 + cos255 - cos265 + cos275
Bài 2: chứng minh rằng
a, (1- cosa)/sina=sina/(1+cosa)
b, tan2a - sin2a = tan2a.sin2a
Bài 3 cho
sinx + cosx = căn2
Chứng minh rằng sinx = cosx. Tìm x
chứng tỏ:
tan a = sin a/ cos a;
cot a = cos a/ sin a;
tan a . cot a =1;
sin^2 a+ cos^2 a =1
Rút gọn biểu thức sau:
a) \(\left(1-\cos a\right)\left(1+\cos a\right)\)
b) \(1+\sin^2a+\cos^2a\)
c) \(\sin a-\sin a\cos^2a\)
d) \(\sin^4a+\cos^4a+2\sin^2a\cos^2a\)
e)\(\tan^2a-\sin^2a\tan^2a\)
f) \(\cos^2a+\tan^2a\cos^2a\)
GIẢI GIÚP MIK VS M.N!!!!!!!
\(\frac{\sin^2a}{\sin a-\cos a}-\frac{\sin a+\cos a}{\tan^2a-1}=\sin a+\cos a\)
chung minh dang thuc tren
cho tam giác ABC .chứng minh
\(sin\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}+sin\frac{B}{2}cos\frac{C}{2}cos\frac{A}{2}+sin\frac{C}{2}cos\frac{A}{2}cos\frac{B}{2}=sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}+tan\frac{A}{2}tan\frac{B}{2}+tan\frac{B}{2}tan\frac{C}{2}+tan\frac{C}{2}tan\frac{A}{2}\)
cho tan a =1/3 tính cos a +sin a /cos a - sin a
BÀI 1 :cho tam giác ABC vuông tại A có AB=4cm BC=6cm. tính tỉ số lượng giác của các góc B và C
BÀI 2 :đơn giản các biểu thức
a)\(A=\cos^2x+\cos^2x.\cot g^2x\)
b)\(sin^2x+\sin^2x.\tan^2x\)
c)\(\dfrac{2cos^2x-1}{\sin x+\cos x}\)
d)\(\dfrac{\cos x}{1+\sin x}+\tan x\)