\(=6\sqrt{\dfrac{xy}{2y^2}}=6\cdot\dfrac{\sqrt{xy}}{y\sqrt{2}}=3\sqrt{2}\cdot\dfrac{\sqrt{xy}}{y}\)
\(=\dfrac{3\sqrt{2xy}}{y}\)
\(=6\sqrt{\dfrac{xy}{2y^2}}=6\cdot\dfrac{\sqrt{xy}}{y\sqrt{2}}=3\sqrt{2}\cdot\dfrac{\sqrt{xy}}{y}\)
\(=\dfrac{3\sqrt{2xy}}{y}\)
\(\sqrt{\dfrac{y}{2x}}+\dfrac{y}{x}.\sqrt{\dfrac{x}{2y}}\) (với x > 0; y > 0)
Khử mẫu của biểu thức dưới dấu căn bậc hai
a) \(\sqrt{\dfrac{5x^3}{49y}}\)
với x ≥ 0, y >0
b) 7xy\(\sqrt{\dfrac{-3}{xy}}\)
với x<0, y>0
rút gọn
a, \(\dfrac{x}{y}\sqrt{\dfrac{x^2}{y^4}}\) với x>0, y khác 0
b, \(2y^2\sqrt{\dfrac{x^4}{4y^2}}\) với y<0
Rút gọn biểu thức:
a) \(\dfrac{\sqrt{x^2+4x+4}}{x-1}\)
b) \(x-2y-\sqrt{x^2-4xy+4y^2}\) ( x>= 0; y>=0)
c) \(\dfrac{\sqrt{x^2+4x+4}}{x^2-4}\)
d) \(\dfrac{\sqrt{x^2+4x+4}}{x^2-2}\)
Cho x,y>0 thỏa \(x-2y-\sqrt{xy}+\sqrt{x}-2\sqrt{y}=0\)
Tính giá trị P=\(\dfrac{x+3y}{\left(\sqrt{x}+3\sqrt{y}\right)\sqrt{x+4y+4\sqrt{xy}}}\)
Mn giúp em với ạ em xin cảm ơn trước ạ<3
Cho x,y>0 và x+y<=1,tìm GTNN: \(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\sqrt{1+x^2y^2}\)
RÚT GỌN BIỂU THỨC
A=\(\frac{a-b}{\sqrt{a}-\sqrt{b}}-\frac{\sqrt{a^3}-\sqrt{b^3}}{a-b}\)(với a>_ 0, b>_ 0, a#b)
B=\(\left(\frac{\sqrt{x^3}+\sqrt{y^3}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}\right).\left(\frac{\sqrt{x}+\sqrt{y}}{x-y}\right)\)(với x>_ 0, y>_ 0, x#y)
C=\(x-4-\sqrt{16-8x^2+x^4}\)(với x>4)
D=\(\frac{a+b-2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}:\frac{1}{\sqrt{a}+\sqrt{b}}\)(với a>0, b>0, a#b)
E=\(\left(2+\frac{a-\sqrt{a}}{\sqrt{a}-1}\right).\left(2-\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)\)(với a>0, a#1)
F=\(\frac{a-3\sqrt{a}}{\sqrt{a}-3}-\frac{a+4\sqrt{a}+3}{\sqrt{a}+3}\)( với a>_ 9)
G=\(\frac{9-x}{\sqrt{x}+3}-\frac{9-6\sqrt{x}+x}{\sqrt{x}-3}-6\)( với x>_ 9 )
Trục căn thức ở mẫu :
f) \(\dfrac{2}{\sqrt{6}-\sqrt{5}}\)
l) \(\dfrac{3}{\sqrt{10}+\sqrt{7}}\)
m) \(\dfrac{1}{\sqrt{x}-\sqrt{y}}\) (\(x>0;y>0;x\ne y\))
1. Giải phương trình:
1/ \(\sqrt{x-4}+\sqrt{6-x}=x^2-10x+27\)
2/ \(\sqrt{x^2-6x+9}+\sqrt{x^2-10x+25}=8\)
3/ \(y^2-2y+3=\dfrac{6}{x^2+2x+4}\)
4/ \(x^2-x-4=2\sqrt{x-1}\left(1-x\right)\)
5/ \(x^2-\left(m+1\right)x+2m-6=0\)
6/ \(615+x^2=2^y\)
2.
a, Cho các số dương a,b thoả mãn \(a+b=2ab\).
Tính GTLN của biểu thức \(Q=\dfrac{2}{\sqrt{a^2+b^2}}\).
b, Cho các số thực x,y thoả mãn \(x-\sqrt{y+6}=\sqrt{x+6}-y\).
Tính GTNN và GTLN của biểu thức \(P=x+y\).
3. Cho hàm số \(y=\left(m+3\right)x+2m-10\) có đồ thị đường thẳng (d), hàm số \(y=\left(m-4\right)x-2m-8\) có đồ thị đường thẳng (d2) (m là tham số, \(m\ne-3\) và \(m\ne4\)). Trên mặt phẳng toạ độ Oxy, (d) cắt trục hoành tại điểm A, (d2) cắt trục hoành tại điểm B, (d) cắt (d2) tại điểm C nằm trên trục tung. Chứng minh hệ thức \(\dfrac{OA}{BC}=\dfrac{OB}{AC}\).
4. Cho 2 đường tròn (O) và (I) cắt nhau tại dây AB, chứng minh rằng \(\Delta OAI=\Delta OBI\).