1/Chứng minh rằng
Tích của 2 số nguyên liên tiếp luôn chia hết cho 2
Tích của 2 STN liên tiếp luôn chia hết cho 6
Bài 2/Chứng minh
a,n.(n+1).(2n+1) chia hết cho 6
b.n mũ 2 +4n +3 chia hết cho 8
?
Bài 5: Chứng minh rằng: Tổng lập phương của 3 số nguyên liên tiếp luôn chia hết cho 9. (a^3 đọc
là a lập phương)
Bài 6: Chứng minh rằng:
a) n(n + 1) (2n + 1) chia hết cho 6
b) n^5 - 5n^3 + 4n chia hết cho 120 Với mọi số n thuộc N
Bài 7: Chứng minh rằng: n^4 + 6n^3 + 11n^2 + 6n chia hết cho 24 Với mọi số n Z
Bài 8: Chứng minh rằng: Với mọi số tự nhiên n lẻ thì :
a) n^2 + 4n + 3 chia hết cho 8
b) n^3 + 3n^2 - n - 3 chia hết cho 48
c) n^12 - n^8 - n^4 + 1chia hết cho 512
Bài 9: Chứng minh rằng:
a) Với mọi số nguyên tố p>3 thì p^2 – 1 chia hết cho 24
b) Với mọi số nguyên tố p, q >3 thì p^2 – q^2 chia hết cho 24
Bài 10: Chứng minh rằng:
n^3 + 11n chia hết cho 6 với mọi số n thuộc Z.
HD: Tách 11n = 12n – n
Bài 3 chứng tỏ a, Tích 3 số tự nhiên liên tiếp luôn chia hết cho 2 b, a^2-a luôn chia hết cho 2, với mọi số nguyên a
Mn giúp mik vs ạ ! Đang gấp ak.
Bài 6. Tìm số nguyên n để
a) n + 5 chia hết cho n -1 ;
b) 2n - 4 chia hết cho n + 2
c) 6n + 4 chia hết cho 2n + 1
d) 3 - 2n chia hết cho n+1
Chứng minh
a, Tích hai số nguyên liên tiếp luôn chia hết cho 2
b,Tích ba số nguyên liên tiếp chia hết cho 6
c,Tổng lập phương của ba số nguyên liên tiếp luôn chia hết cho 9
d,n^3+11n chia hết cho 6 với mọi n là số nguyên
e,n^5-5n^3+4n chia hết cho 120 với mọi n là số tự nhiên
trình bày cho mình luôn nha!!!!!!
Bài 1 : Tìm các cặp số nguyên x,y thỏa mãn :
3x + 7 = y(x+2)
Bài 2 : Tìm giá trị nhỏ nhất của biểu thức sau :
a) A= I x-2 I + I y-5 I - 10 ( với x,y∈Z)
b) B= ( x-8)2+ 2014
Bài 3 : Chứng minh rằng :
a)Tổng của 3 số nguyên liên tiếp thì chia hết cho 3 , còn tổng của 4 số nguyên liên tiếp thì chia hết cho 4
b)(n+ 5 ) . ( n+ 6 ) luôn chia hết cho 2 với mọi số tự nhiên n
Bài 4 : Liệt kê và tính tổng các số nguyên x thỏa mãn :
\(\frac{-15}{3}\le x\le\frac{14}{-7}\)
Các bạn làm câu nào thì tùy nhưng giúp mình nhanh nhé mai mik phải nộp rồi
Bài 1 : Cho 7 số tự nhiên bất kì. CMR bao giờ cũng có thể chọn ra 2 số có hiệu chia hết cho 6
Bài 2 : CMR trong 6 số tự nhiên liên tiếp luôn tìm được hiệu 2 số chia hết cho 5
Bài 3 : Cho 3 số lẻ. CMR tồn tại 2 số có tổng và hiệu chia hết cho 8
Chứng minh rằng trong 5 số tự nhiên liên tiếp luôn có một số chia hết cho 5
Giups mk nhe !
ai xong minh tick
Bài 1: Tìm x ∈ N biết
2
3 = 412 : 16
2 + 7 chia hết cho (2x2 + 1)
Bài 2: Tìm số nguyên tố p và q sao cho
a) p2 - 2q2 = 17
q + qp là 1 số nguyên tố
Lưu ý, e mới sắp lên lớp 6, mn giải theo cách lớp 6 cho e với nhé ạ