Bài 1: Tìm x ∈ N biết
2
3 = 412 : 16
2 + 7 chia hết cho (2x2 + 1)
Bài 2: Tìm số nguyên tố p và q sao cho
a) p2 - 2q2 = 17
q + qp là 1 số nguyên tố
Bài 1: Tìm x ∈ N biết
2
3 = 412 : 165
2 + 7 chia hết cho (2x2 + 1)
Bài 2: Tìm số nguyên tố p và q sao cho
a) p2 - 2q2 = 17
q + qp là 1 số nguyên tố
Bài 1: Tìm x ∈ N biết
a) 72 - 7(x+1) = 42
b) (2x - 1)3 = 412 : 16
c) 6x + 5 chia hết cho (3x - 1)
d) x2 + 7 chia hết cho (2x2 + 1)
Bài 2: Tìm số nguyên tố p và q sao cho
a) p2 - 2q2 = 17
b) pq + qp là 1 số nguyên tố
Bài 2: Tìm số nguyên tố p và q sao cho
a) p2 - 2q2 = 17
q + qp là 1 số nguyên tố
bài 1: Cho p là số nguyên tố lớn hơn 3 . chứng minh (p+5)(p+7)chia hết cho 24
Bài 2 :Tìm các số tự nhiên m và n sao cho (2m+1)(2n+1)=91
bài 3: Tìm số nguyên tố p sao cho cả p+4 và p+8 đều là số nguyên tố
Bài 4 :Tìm tất cả các cặp số nguyên tố ( x, y) thỏa mãn đẳng thức x2 - 2y2 =1
bài 5: cho a,b E Z ; a.b khác 0 , chứng minh ( 5a + 3b ; 13a + 8b ) = (a;b)
Bài 6 : Cho a , a+k , a+2k là 3 số nguyên tố lớn hon 3 . chứng minh : K chia hết cho 3
Bài 2 (3,5 điểm)
1) Tìm số tự nhiên nhỏ nhất chia cho 5 dư 1, chia cho 7 dư 3.
2) Tìm số nguyên tố p sao cho p2 +4 và p2– 4 đều là số nguyên tố.
Bài 1:Cho p là một số nguyên tố lớn hơn 3 và p+8 là một số nguyên tố. Chứng tỏ p+10 phải là pợp số
Bài 2: Tìm số nguyên tố p sao cho p+2;p+4 cũng là các số nguyên tố
BÀi 11 Tìm tập hợp A các số tự nhiên n sao cho 20 thì chia hết cho n và 18 thì chia hết cho n+1
Có cả cách giả nữa nhé!!!!!!!!!!
Bài 1: Cho số nguyên tố p lớn hơn 5 thỏa mãn p + 14 và p2 + 6 cũng là số nguyên tố. Chứng minh rằng p + 11 chia hết cho 10.
Bài 2: Cho số nguyên tố p lớn hơn 3 thỏa mãn 2p + 1 cũng là số nguyên tố. Chứng minh rằng p + 1 chia hết cho 6.
Bài 3: Cho các số nguyên tố p thỏa mãn 8p - 1 cũng là số nguyên tố. Chứng minh rằng 8p + 1 cũng là hợp số.
Bài 4: Tổng của 3 số nguyên tố bằng 1012. Tìm số nhỏ nhất trong 3 số nguyên tố đó.
Bài 1:Tìm số tự nhiên n sao cho 2^n+1 và 2^n-1 là số nguyên tố.
Bài 2:Tìm 3 số tự nhiên lẻ liên tiếp đồng thời là số nguyên tố.
Bài 3:Cho p là số nguyên tố ; p>3; q là số nguyên tố; q>3 và p>q. Chứng tỏ rằng (p^2-q^2) chia hết cho 24.
TRÌNH BÀY BÀI GIẢI GIÚP MÌNH NHA