a.
\(cosa-cosa.sin^2a=cosa.\left(1-sin^2a\right)=cosa.cos^2a=cos^3a\)
b.
\(sin^6a+cos^6a+3sin^2a=\left(sin^2a+cos^2a\right)^2-3sin^2acos^2a.\left(sin^2a+cos^2a\right)+3sin^2a\)
\(=1-3sin^2a.cos^2a+3sin^2a\)
\(=1+3sin^2a\left(1-cos^2a\right)=1+3sin^2a.sin^2a\)
\(=1+3sin^4a\)
6.
\(A=sin^254-cos^230+sin^236+tan^245\)
\(=sin^254-\left(\dfrac{\sqrt{3}}{2}\right)^2+sin^2\left(90-54\right)+1^2\)
\(=sin^254+cos^254-\dfrac{3}{4}+1\)
\(=1-\dfrac{3}{4}+1=\dfrac{5}{4}\)
\(B=\dfrac{1-sin^243}{cos^243}=\dfrac{cos^243}{cos^243}=1\)
\(C=\dfrac{sin^4a-cos^4a}{sin^2a-cos^2a}=\dfrac{\left(sin^2a-cos^2a\right)\left(sin^2a+cos^2a\right)}{sin^2a-cos^2a}\)
\(=sin^2a+cos^2a=1\)