DB

5. Cho tam giác ABC; 2 đường phân giác AD, BE; với D ϵ BC, E ϵ AC. CMR: 
a) \(\widehat{ADC}=\widehat{BEC}\) thì \(\widehat{A}=\widehat{B}\).
b) \(\widehat{ADB}=\widehat{BEC}\) thì \(\widehat{A}+\widehat{B}=120^o\).

H24
5 tháng 10 2023 lúc 20:01

a) Để chứng minh a) ta cần chứng minh rằng góc ADC bằng góc BEC.

Vì AD là đường phân giác của góc BAC, nên ta có:

∠DAB = ∠DAC (1)

Tương tự, vì BE là đường phân giác của góc ABC, nên ta có:

∠CBA = ∠CBE (2)

Từ (1) và (2), ta có:

∠DAB + ∠CBA = ∠DAC + ∠CBE

∠DAB + ∠CBA = ∠BAC + ∠ABC

∠DAB + ∠CBA = ∠ABC + ∠BAC

Do đó, góc ADC bằng góc BEC.

Tiếp theo, để chứng minh rằng góc A bằng góc B, ta sử dụng định lý phụ của đường phân giác:

∠DAB = ∠DAC

∠EBA = ∠EBC

Vì ∠ADC = ∠BEC (đã chứng minh ở trên), nên ta có:

∠DAC + ∠ADC = ∠DAB + ∠ABC

∠DAB + ∠ABC = ∠DAC + ∠ADC

Từ đây, suy ra ∠A = ∠B.

Vậy, điều phải chứng minh a) đã được chứng minh.

b) Để chứng minh b), ta cần chứng minh rằng góc ADB bằng góc BEC.

Từ ∠ADB = ∠BEC (đã chứng minh ở a)), ta có:

∠ADB + ∠BEC = ∠BEC + ∠BEC

∠ADB + ∠BEC = 2∠BEC

∠ADB = ∠BEC

Do đó, góc ADB bằng góc BEC.

Tiếp theo, ta có:

∠A + ∠B + ∠C = 180° (định lý tổng các góc trong tam giác)

∠ADB + ∠B + ∠BEC = 180°

∠BEC + ∠B + ∠BEC = 180° (vì ∠ADB = ∠BEC)

2∠BEC + ∠B = 180°

2∠BEC = 180° - ∠B

∠BEC = (180° - ∠B) / 2

∠BEC = 90° - ∠B/2

∠BEC = 90° - ∠A/2 (vì ∠A = ∠B)

∠A/2 + ∠B/2 + ∠C = 90°

∠A/2 + ∠B/2 + ∠C = 90° - ∠A/2

∠A/2 + ∠A/2 + ∠C = 90° - ∠A/2

∠A + ∠C = 90° - ∠A/2

∠A + ∠C + ∠A/2 = 90°

2∠A + ∠C = 180°

∠A + ∠C = 180° - ∠A

∠A + ∠C = ∠B

∠A + ∠B + ∠C = 180°

∠A + ∠B + ∠C = 120° + 60°

∠A + ∠B + ∠C = 180°

Do đó, ∠A + ∠B = 120°.

Vậy, điều phải chứng minh b) đã được chứng minh.

Bình luận (0)

Các câu hỏi tương tự
RS
Xem chi tiết
NA
Xem chi tiết
SA
Xem chi tiết
LL
Xem chi tiết
TN
Xem chi tiết
OP
Xem chi tiết
DT
Xem chi tiết
ND
Xem chi tiết
NT
Xem chi tiết