`(3x-1)(x^2+2)=(3x-1)(7x-10)`
`<=> (3x-1)(x^2+2)-(3x-1)(7x-10)=0`
`<=>(3x-1)(x^2+2-7x+10)=0`
`<=>(3x-1)(x^2-7x+12)=0`
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\x^2-7x+12=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=3\\x=4\end{matrix}\right.\)
Vậy `S={1/3 ; 3;4}`.
pt <=> (3x-1)(x\(^2\)+2-7x+10)=0
<=> (3x-1)(x\(^2\)-7x+12)=0
<=> \(\left[{}\begin{matrix}3x-1=0\\x\text{}^2-7x+12=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=\dfrac{1}{3}\\\left(x-4\right)\left(x-3\right)=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x+\dfrac{1}{3}\\x=4\\x=3\end{matrix}\right.\)