\(3+2^{x-1}=24-\left[4^2-\left(2^2-1\right)\right]\)
\(\Leftrightarrow2^{x-1}=24-16+3-3\)
\(\Leftrightarrow x-1=3\)
hay x=4
\(3+2^{x-1}=24-\left[4^2-\left(2^2-1\right)\right]\)
<=> \(3+2^{x-1}=11\)
<=> \(2^{x-1}=8\)
<=> \(2^{x-1}=2^3\)
<=> x - 1 = 3
<=> x = 4
`3 + 2^(x-1)=24-[4^2-(2^2-1)]`
`=> 3+2^(x-1)=24-[16-(4-1)]`
`=>3+2^(x-1)=24-[16-3]`
`=> 3+2^(x-1)=24-13`
`=> 3+2^(x-1)=11`
`=> 2^(x-1)=11-3`
`=> 2^(x-1)=8`
`=> 2^(x-1)=2^3`
`=> x-1=3`
`=> x=3+1`
`=> x=4`
Vậy `x=4`