Ta có: \(\left(2x-1\right)^{2014}+\left(y-\dfrac{2}{5}\right)^{2014}+\left|x+y+z\right|=0\)
\(\Rightarrow\left(2x-1\right)^{2014}=0\) (1)
\(\Rightarrow\left(y-\dfrac{2}{5}\right)^{2014}=0\) (2)
\(\Rightarrow\left|x+y+z\right|=0\) (3)
(1) Ta tìm được x:
\(\left(2x-1\right)^{2014}=0\)
\(\Rightarrow2x-1=0\)
\(\Rightarrow2x=1\)
\(\Rightarrow x=\dfrac{1}{2}\)
(2) Ta tìm được y:
\(\left(y-\dfrac{2}{5}\right)^{2014}=0\)
\(\Rightarrow y-\dfrac{2}{5}=0\)
\(\Rightarrow y=\dfrac{2}{5}\)
Từ (1) và (2) ta kết hợp với (3) ta sẽ tìm được z:
\(x+y+z=0\) hay \(\dfrac{1}{2}+\dfrac{2}{5}+z=0\)
\(\Rightarrow\dfrac{9}{10}+z=0\)
\(\Rightarrow z=-\dfrac{9}{10}\)
Vậy: \(x=\dfrac{1}{2};y=\dfrac{2}{5};z=-\dfrac{9}{10}\)
\(\left(2x-1\right)^{2014}+\left(y-\dfrac{2}{5}\right)^{2014}+|x+y+z|=0\left(1\right)\)
mà \(\left(2x-1\right)^{2014}\ge0;\left(y-\dfrac{2}{5}\right)^{2014}\ge0\) (với mọi x;y)
\(\left(1\right)\Rightarrow2x-1=0;y-\dfrac{2}{5}=0;|x+y+z|=0\)
\(\Rightarrow x=\dfrac{1}{2};y=\dfrac{2}{5};z=-\dfrac{1}{2}-\dfrac{2}{5}=-\dfrac{9}{10}\)