\(2\sqrt{10}-\dfrac{5}{4}-\sqrt{10}=\sqrt{10}-\dfrac{5}{4}=\dfrac{4\sqrt{10}-5}{4}\)
\(2\sqrt{10}-\dfrac{5}{4}-\sqrt{10}=\sqrt{10}-\dfrac{5}{4}=\dfrac{4\sqrt{10}-5}{4}\)
căn 10 trừ căn 5 phần 3 trừ căn 18
bài 1:trục căn thức ở mẫu
a.\(\dfrac{\sqrt{5}-1}{\sqrt{5}+1}\)
b.\(\dfrac{37}{7+2\sqrt{3}}\)
c.\(\dfrac{2\sqrt{10}-5}{4-\sqrt{10}}\)với a>0, a≠4
d.\(\dfrac{1+\sqrt{a}}{2-\sqrt{a}}\)
Trục căn thức ở mẫu và rút gọn (nếu được)
a) \(\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}\)
b) \(\dfrac{26}{5-2\sqrt{3}}\)
c) \(\dfrac{2\sqrt{10}-5}{4-\sqrt{10}}\)
d) \(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}\)
b1: đưa thứa số vào trong dấu căn rồi tính :
a) \(6\left(\sqrt{15}-4\right)\sqrt{\dfrac{31+8\sqrt{15}}{12}}\)
b) \(\dfrac{x+1}{x-1}\sqrt{\dfrac{x^2-3x+2}{x+1}}\)
b2: Khử mẫu của biểu thức lấy căn rồi tính :
\(\dfrac{2\sqrt{3}-10}{5}\sqrt{\dfrac{5+\sqrt{3}}{5-\sqrt{3}}}\)
8 / 3 - căn 5 + căn 9 - 4 căn 5
Trục căn thức ở mẫu và giả thiết các biểu thức đều có nghĩa:
\(\dfrac{5}{\sqrt{10}};\dfrac{5}{2\sqrt{5}};\dfrac{1}{3\sqrt{20}};\dfrac{2\sqrt{2}+2}{5\sqrt{2}};\dfrac{y+b\sqrt{y}}{b.\sqrt{y}}.\)
Trục căn thức ở mẫu và giả thiết các biểu thức đều có nghĩa:
\(\dfrac{2}{\sqrt{6}-\sqrt{5}};\dfrac{3}{\sqrt{10}+\sqrt{7}};\dfrac{1}{\sqrt{x}-\sqrt{y}};\dfrac{2ab}{\sqrt{a}-\sqrt{b}}.\)
Bài 1: Rút gọn. a, 15 nhân căn bậc 4/3 - 5 căn bậc 48 + 2 căn bậc 12 - 6 nhân căn bậc 1/3. b, B= 15/căn 6 +1 - 3/ căn 7 - căn 2 - 15 căn 6 + 3 căn 7
chỉ cần đưa về dạng hằng đảng thức thôi , xin cam ơn mọi người
1,\(\sqrt{26+15\sqrt{3}}\)
2,\(\sqrt{8-2\sqrt{15}}-\sqrt{23-4\sqrt{5}}\)
3,\(\sqrt{12-3\sqrt{7}}-\sqrt{12-3\sqrt{7}}\)
4,\(\sqrt{7-2\sqrt{10}}-\sqrt{7+2\sqrt{10}}\)
5,\(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
6,\(3\sqrt{3}+4\sqrt{12}-5\sqrt{27}\)
7,\(\sqrt{32}-\sqrt{50}+\sqrt{18}\)
8,\(\sqrt{72}+\sqrt{4\dfrac{1}{2}}-\sqrt{32}-\sqrt{162}\)
9,\(\dfrac{1}{2}\sqrt{48}-2\sqrt{75}-\dfrac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\dfrac{1}{3}}\)