NA

22015 + 32014 

tìm số tận cùng

17^2023 tìm số tận cùng

^ là mũ

NN
11 tháng 7 2023 lúc 9:22

Ta có: \(2^1=..2\)

\(2^2=..4\)

\(2^3=..8\)

\(2^4=..6\)

\(2^5=..2\)

\(2^6=..4\)

\(...\)

Lần lượt như vậy, ta sẽ có:

\(2^{4k+1}=..2\)

\(2^{4k+2}=..4\)

\(2^{4k+3}=..8\)

\(2^{4k}=..6\)

Ta có: \(2015=4.503+3\)

\(=>2015=4k+3\)

\(=>2^{2015}=..8\)

 

Ta lại có: \(3^1=..3\)

\(3^2=..9\)

\(3^3=..7\)

\(3^4=..1\)

\(3^5=..3\)

\(3^6=..9\)

\(...\)

Lần lượt như vậy,ta có quy luật:

\(3^{4k+1}=..3\)

\(3^{4k+2}=..9\)

\(3^{4k+3}=..7\)

\(3^{4k}=..1\)

Ta có: \(2014=4.503+2\)

\(=>2014=4k+2\)

\(=>3^{2014}=..9\)

 

VẬY: \(2^{2015}+3^{2014}=..8+..9=..7\)

=> \(2^{2015}+3^{2014}\) có tận cùng là 7.

 

------------------------------------------------------------

Ta có: \(17^1=..7\)

\(17^2=..9\)

\(17^3=..3\)

\(17^4=..1\)

\(17^5=..7\)

\(17^6=..9\)

Lần lượt như vậy, ta có quy luật:

\(17^{4k+1}=..7\)

\(17^{4k+2}=..9\)

\(17^{4k+3}=..3\)

\(17^{4k}=..1\)

TA CÓ; \(2023=4.505+3\)

\(=>2023=4k+3\)

\(=>17^{2023}=..3\)

Vậy \(17^{2023}\) có tận cùng là 3.

Bình luận (0)

Các câu hỏi tương tự
NA
Xem chi tiết
NP
Xem chi tiết
NA
Xem chi tiết
DD
Xem chi tiết
CD
Xem chi tiết
NC
Xem chi tiết
PL
Xem chi tiết
LV
Xem chi tiết
MP
Xem chi tiết