H24

`(2/1.2 + 2/3.4 + ... + 2/99.100) . (x^2 +x+1945)/2 > 1975 . (1/51 + 1/52 + ... + 1/99 + 1/100)`

NT
6 tháng 1 2024 lúc 19:44

\(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)\)

\(=\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99}\right)+\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)\)

\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{99}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)\)

\(=\left(1-\dfrac{1}{2}\right)+\left(\dfrac{1}{3}-\dfrac{1}{4}\right)+...+\left(\dfrac{1}{99}-\dfrac{1}{100}\right)\)

=\(\dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\)

\(\left(\dfrac{2}{1\cdot2}+\dfrac{2}{3\cdot4}+...+\dfrac{2}{99\cdot100}\right)\cdot\dfrac{x^2+x+1945}{2}>1975\left(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)\)=>\(2\left(\dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\right)\cdot\dfrac{x^2+x+1945}{2}>1975\left(\dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\right)\)

=>\(x^2+x+1945>1975\)

=>\(x^2+x-30>0\)

=>(x+6)(x-5)>0

TH1: \(\left\{{}\begin{matrix}x+6>0\\x-5>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>-6\\x>5\end{matrix}\right.\)

=>x>5

TH2: \(\left\{{}\begin{matrix}x+6< 0\\x-5< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< -6\\x< 5\end{matrix}\right.\)

=>x<-6

Bình luận (0)

Các câu hỏi tương tự
MY
Xem chi tiết
LT
Xem chi tiết
HN
Xem chi tiết
BY
Xem chi tiết
BV
Xem chi tiết
KP
Xem chi tiết
ZZ
Xem chi tiết
HT
Xem chi tiết
LT
Xem chi tiết