Bài 1:
a,Cho vecto u=(4;3). Tìm vecto v, biết vecto v cùng phương và giá trị tuyệt đối vecto v =15
b,Cho vecto a=(2k+10 ; 5k+16)
vecto b=(-8; -16). Tìm số k để 2 vecto: vecto a và vecto b cùng phương
c,Cho 3 vecto: vecto a(3;1)
vecto b(-2;5)
vecto c(0;17)
*Hãy biểu diễn vecto c theo 2 vecto a và vecto b
*Cho vecto u=2m.vecto a + (1-m). vecto b . Hãy tìm số m để giá trị vecto u =9
Bài 2: Trong mặt phẳng tọa độ (O; vecto i; vecto j) cho A(1;-2); B(0;4); C(3;2). Hãy tìm tọa độ của
a,Điểm M, biết: vecto CM= 2.vecto AB-3.vecto AC
b,Điểm N, biết: vecto AN+ 2.vecto BN- 4 vecto CN= vecto 0
c,Tìm tọa độ điểm E là điểm đối xứng với điểm A qua điểm B
cho vectơ u=vectơ a +3 vecto b vuông góc với vectơ v=7 vecto a-5 vecto b và vecto x= vecto a-4 vecto b vuông góc với vecto y=7 vecto a-2 vecto b. khi đó góc giữa 2 vecto a và b bằng bao nhiêu
Chứng minh rằng với 2 vecto a,b không cùng phương ta có:
|vecto a| - |vecto b| < |vecto a + vecto b| < |vecto a| + |vecto b|
Cho tam giác ABC xác định điểm I thỏa:
a/ 2 vecto IA + vecto IB - vecto IC = vecto 0
b/ 2 vecto IA + 3 vecto IB - vecto IC = vecto 0
c/ 3 vecto IA - vecto IB + 2 vecto IC = vecto 0
cho hbh ABCD tâm O . vectơ AO= vecto a ; vecto BO = vecto b
a. CMR vecto AB+vecto AD =2 vecto AO
b. tính các vecto : AC;BD;AB;BC;CD;DA theo vecto a ,vecto b
Cho A(0,3),B(4,2). Điểm D thỏa vecto OD +2vecto DA -2 vecto DB=vecto 0, tọa độ D là
Cho hình bình hành ABCD. Gọi M,N,K là các điểm định bởi:
vecto AM = 2 vecto AB, vecto AN = 1/3 vecto AD, vecto AK = 2/7 vecto AC. Chứng minh 3 điểm M,K,N thẳng hàng
Cho tam giác ABC gọi G là trọng tâm , M trung điển BC và D đối xứng vs B qua G . Đẳng thức nào sau đây đúng :
A. Vecto MD = 3/4 AC + 5/4 AB
b,vecto MD = 1/3 AC -2/3 AB
c. Vecto MD=1/6 AC -5/6 AB
d. Vecto MD= 1/2 AC + 5/2 AB
Cho ∆ABC, M, N là các điểm sao cho vecto AM = 2 vecto AB, vecto AN = 2/5 vecto AC
Chứng minh vecto MN = 2/3 vecto AC - 2 vecto AB