Violympic toán 9

HH

2. Cho biểu thức : B = \(\dfrac{2\sqrt{a}-9}{a-5\sqrt{a}+6}-\dfrac{\sqrt{a}+3}{\sqrt{a}-2}-\dfrac{2\sqrt{a}+1}{3-\sqrt{a}}\)

a. Tìm a để B có nghĩa

b. Rút gọn B

PL
1 tháng 10 2018 lúc 18:50

\(2a.ĐKXĐ:x\ge0;a\ne4;a\ne9\)

\(b.B=\dfrac{2\sqrt{a}-9}{a-5\sqrt{a}+6}-\dfrac{\sqrt{a}+3}{\sqrt{a}-2}-\dfrac{2\sqrt{a}+1}{3-\sqrt{a}}=\dfrac{2\sqrt{a}-9-\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)+\left(2\sqrt{a}+1\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}=\dfrac{2\sqrt{a}-9-a+9+2a-3\sqrt{a}-2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}=\dfrac{a-\sqrt{a}-2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}=\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}=\dfrac{\sqrt{a}+1}{\sqrt{a}-3}\)

Bình luận (0)

Các câu hỏi tương tự
P2
Xem chi tiết
NS
Xem chi tiết
NC
Xem chi tiết
H24
Xem chi tiết
BB
Xem chi tiết
HH
Xem chi tiết
NS
Xem chi tiết
KG
Xem chi tiết
KG
Xem chi tiết