Violympic toán 9

H24

1)Rút Gọn \(P=\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)

2) Giaỉ pt \(\sqrt{y^2-\frac{7}{y^2}}+\sqrt{y-\frac{7}{y^2}}=y\)

3) Giaỉ hệ phương trình \(\left\{{}\begin{matrix}2x^2-y^2=1\\xy+x^2=2\end{matrix}\right.\)

NL
10 tháng 11 2019 lúc 11:42

\(P=\frac{\sqrt{2}\left(2+\sqrt{3}\right)}{2+\sqrt{4+2\sqrt{3}}}+\frac{\sqrt{2}\left(2-\sqrt{3}\right)}{2-\sqrt{4-2\sqrt{3}}}=\frac{\sqrt{2}\left(2+\sqrt{3}\right)}{2+\sqrt{\left(\sqrt{3}+1\right)^2}}+\frac{\sqrt{2}\left(2-\sqrt{3}\right)}{2-\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(=\frac{\sqrt{2}\left(2+\sqrt{3}\right)}{3+\sqrt{3}}+\frac{\sqrt{2}\left(2-\sqrt{3}\right)}{3-\sqrt{3}}=\sqrt{2}\left(\frac{\left(2+\sqrt{3}\right)\left(3-\sqrt{3}\right)+\left(2-\sqrt{3}\right)\left(3+\sqrt{3}\right)}{6}\right)\)

\(=\sqrt{2}\left(\frac{3+\sqrt{3}+3-\sqrt{3}}{6}\right)=\sqrt{2}\)

2/ ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\sqrt{y^2-\frac{7}{y^2}}=a\\\sqrt{y-\frac{7}{y^2}}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=y\\a^2-b^2=y^2-y\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=y\\\left(a-b\right)\left(a+b\right)=y^2-y\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=y\\a-b=y-1\end{matrix}\right.\)

\(\Rightarrow b=\frac{1}{2}\Rightarrow\sqrt{y-\frac{7}{y^2}}=\frac{1}{2}\Rightarrow y-\frac{7}{y^2}=\frac{1}{4}\Rightarrow4y^3-y^2-28=0\)

\(\Rightarrow y=2\)

3/ \(\Leftrightarrow\left\{{}\begin{matrix}4x^2-2y^2=2\\xy+x^2=2\end{matrix}\right.\)

\(\Rightarrow3x^2-xy-2y^2=0\)

\(\Rightarrow\left(x-y\right)\left(3x+2y\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=y\\x=-\frac{2}{3}y\end{matrix}\right.\) thay vào 1 trong 2 pt là xong

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
LH
Xem chi tiết
H24
Xem chi tiết
ML
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
AA
Xem chi tiết
PQ
Xem chi tiết