H24

1,Cho hbh ABCD có BC=2AB,góc B = 60°.Gọi M,N lần lượt là trung điểm của AD và BC.Gọi I là điểm đối xứng của B qua A .Vẽ hình

a,Tứ giác AMNB là hình j?Vì sao

b,Cminh:AN Vuông góc với ND

c,T/g ACDI là hình j?Vì sao

2,Cho▲ABC vuông tại A,M là tđ của BC.kẻ MD vuông góc AB (D thuộc AB),ME vuông góc AC (E thuộc AC). Vẽ hình

a,T/g ADME là hìng j?Vì sao

b▲ABC có điều kiện j thì t/g ADME là hình vuông

3,Phân tích đa thức

ab(a+b)-bc(b+c)-ac(c-a)

NT
17 tháng 12 2023 lúc 13:41

2:

a: Xét tứ giác ADME có

\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)

=>ADME là hình chữ nhật

b: Hình chữ nhật ADME trở thành hình vuông khi AM là phân giác của góc BAC

Xét ΔABC có

AM là đường trung tuyến

AM là đường phân giác

Do đó: ΔABC cân tại A

=>AB=AC

3:

\(ab\left(a+b\right)-bc\left(b+c\right)-ac\left(c-a\right)\)

\(=a^2b+ab^2-b^2c-bc^2+ac\left(a-c\right)\)

\(=\left(a^2b-bc^2\right)+\left(ab^2-b^2c\right)+ac\left(a-c\right)\)

\(=b\left(a^2-c^2\right)+b^2\left(a-c\right)+ac\left(a-c\right)\)

\(=b\left(a-c\right)\left(a+c\right)+\left(a-c\right)\left(b^2+ac\right)\)

\(=\left(a-c\right)\left(ba+bc+b^2+ac\right)\)

\(=\left(a-c\right)\left[\left(ba+b^2\right)+\left(bc+ac\right)\right]\)

\(=\left(a-c\right)\left[b\left(a+b\right)+c\left(a+b\right)\right]\)

1:

a: Ta có: ABCD là hình bình hành 

=>AD=BC(1)

Ta có: M là trung điểm của AD

=>\(MA=MD=\dfrac{AD}{2}\left(2\right)\)

Ta có:N là trung điểm của BC

=>\(NB=NC=\dfrac{BC}{2}\)(3)

Từ (1),(2),(3) suy ra AM=MD=CN=NB

Xét tứ giác AMNB có

AM//NB

AM=NB

Do đó: AMNB là hình bình hành

Hình bình hành AMNB có AM=AB(=AD/2)

nên AMNB là hình thoi

b: Ta có: AMNB là hình thoi

=>MN=AM

mà \(AM=\dfrac{AD}{2}\)

nên \(NM=\dfrac{AD}{2}\)

Xét ΔNAD có

NM là đường trung tuyến

\(NM=\dfrac{AD}{2}\)

Do đó: ΔNAD vuông tại N

=>AN\(\perp\)ND

c:

Ta có: AB=DC

AB=AI

Do đó: DC=AI

Ta có: AB//DC

I\(\in\)AB

Do đó: IA//DC

Xét ΔABN có BA=BN(=BC/2) và \(\widehat{B}=60^0\)

nên ΔBAN đều

=>\(AN=BN=\dfrac{BC}{2}\)

Xét ΔBAC có

AN là đường trung tuyến

\(AN=\dfrac{BC}{2}\)

Do đó: ΔBAC vuông tại A

=>BA\(\perp\)AC

=>CA\(\perp\)AI

Xét tứ giác AIDC có

AI//DC

AI=DC

Do đó: AIDC là hình bình hành

Hình bình hành AIDC có \(\widehat{IAC}=90^0\)

nên AIDC là hình chữ nhật

Bình luận (0)