1. Theo đầu bài ta có:
\(x^3+3xy+y^3\)
\(=\left(x^3+y^3\right)+3xy\)
\(=\left(x+y\right)\left(x^2+y^2-xy\right)+3xy\)
Do x + y = 1 nên:
\(=\left(x^2+y^2-xy\right)+3xy\)
\(=x^2+y^2+\left(3xy-xy\right)\)
\(=x^2+y^2+2xy\)
\(=\left(x+y\right)^2\)
Do x + y = 1 nên:
\(=1^2=1\)
2. Theo đầu bài ta có:
\(m+n+p=15\)
\(\Rightarrow\left(m+n+p\right)^2=15^2\)
\(\Rightarrow m^2+n^2+p^2+2mn+2np+2mp=225\)
Do m2 + n2 + p2 = 77 nên:
\(\Rightarrow77+2\left(mn+np+mp\right)=225\)
\(\Rightarrow2\left(mn+np+mp\right)=225-77\)
\(\Rightarrow mn+np+mp=\frac{148}{2}\)
\(\Rightarrow mn+np+mp=74\)