1/(a+b+1) + 1/(b+c+1) + 1/(c+a+1) ≤ 1
<=> (a+b+1)(b+c+1) + (b+c+1)(c+a+1) + (c+a+1)(a+b+1) ≤ (a+b+1)(b+c+1)(c+a+1)
<=> (a+b)(b+c)+a+b+b+c+1 + (b+c)(c+a)+b+c+c+a+1 + (c+a)(a+b)+c+a+a+b+1
≤ (a+b)(b+c)(c+a) + (a+b)(b+c) + (b+c)(c+a) + (c+a)(a+b) +a+b+b+c+c+a+1
<=> 2+2(a+b+c) ≤ (a+b)(b+c)(c+a)
<=> 2+2(a+b+c) ≤ (a+b+c)(ab+bc+ca) - abc
<=> 3 ≤ (a+b+c)(ab+bc+ca-2)
Áp dụng bất đẳng thức Cauchy:
(a+b+c)(ab+bc+ca-2) ≥ 3.³√(abc) .[3³√(ab.bc.ca) -2] = 3
=> đpcm
Đẳng thức xảy ra <=> a=b=c=1