Ta cần chứng minh: \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Leftrightarrow a^2c+b^2a+c^2b\ge ab+bc+ca\)
Ta có:
\(a^2c+a^2c+c^2b\ge3\sqrt[3]{a^3c^3.abc}=3\sqrt[3]{a^3c^3}=3ac\)
\(b^2a+b^2a+a^2c\ge3ab\) ; \(c^2b+c^2b+b^2a\ge3bc\)
Cộng vế với vế:
\(\Rightarrow3\left(a^2c+b^2a+c^2b\right)\ge3\left(ab+bc+ca\right)\) (đpcm)