\(\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+...+\dfrac{1}{x\left(x+3\right)}=\dfrac{101}{1540}\)
=>\(\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+...+\dfrac{3}{x\left(x+3\right)}=\dfrac{303}{1540}\)
=>\(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{x}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)
=>\(\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)
=>\(\dfrac{1}{x+3}=\dfrac{1}{5}-\dfrac{303}{1540}=\dfrac{1}{308}\)
=>x+3=308
=>x=305