\(=14+18+2\cdot3\sqrt{2\cdot14}+6\sqrt{28}=32+12\sqrt{28}\)
\(=14+18+2\cdot3\sqrt{2\cdot14}+6\sqrt{28}=32+12\sqrt{28}\)
\(\left(\sqrt{14}-3\sqrt{2}\right)^2+6\sqrt{28}\)
Bài 1:Tìn ĐKXĐ
a.\(\sqrt{\dfrac{2}{^{^{^{ }}}x^2}}\)
b.\(\sqrt{\dfrac{-3}{3x+5}}\)
Bài 2:
a.\(\dfrac{2+\sqrt{2}}{1+\sqrt{2}}\)
b.\(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}\)
c,\(\left(\sqrt{14}-3\sqrt{2}\right)^2+6\sqrt{28}\)
Trả lời giúp mình với ạ!Mình cảm ơn nhiều!
Rút gọn biểu thức
a) \(\left(\sqrt{14}-3\sqrt{2}\right)^2+6\sqrt{28}\)
b) \(2\sqrt{20}-3\sqrt{20}+\sqrt{125}\)
\(\frac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}+\frac{3\sqrt{45}+\sqrt{243}}{\sqrt{6+\sqrt{3}}}\)
\(\dfrac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}\)
\(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(\dfrac{3\sqrt{8}-2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}\)
rút gọn : \(\frac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}\)
rút gọn:
\(\frac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}\)
Rút gọn biểu thức :
a) \(\frac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}\)
b) \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
Rút gọn:
a,\(\frac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}\)
b,\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3+\sqrt{4}}}\)
Câu 28: Đường thẳng y = 3x + 2 và đường thẳng y = -x + 6 cắt nhau tại điểm:
A. (1; 5) B . (2; 7) C. (2; 4) D. (4; 14).
Câu 32: Khẳng định nào về hàm số y = x + 3 là sai
A. Cắt Oy tại (0; 3) B. Nghịch biến trên
C. Cắt Ox tại (-3; 0) D. Đồng biến trên
Câu 33: Góc tạo bởi đường thẳng: y = với trục Ox bằng
A. 300 B . 300 C. 450 D. 600.