NN

1. Trong không gian có 3 điểm A(1;-2;4) B(3;1;2) C(0;1;1) a, tính vecto AB;BC suy ra độ dài cạnh AB,và BC b, viết phương trình mặt phẳng ABC c, tính khoảng cách từ điểm M(2;1;3) đến mặt phẳng (ABC)

NL
18 tháng 3 2021 lúc 10:25

\(\overrightarrow{AB}=\left(2;3;2\right)\Rightarrow AB=\sqrt{2^2+3^2+2^2}=\sqrt{17}\)

\(\overrightarrow{BC}=\left(-3;0;-1\right)\Rightarrow BC=\sqrt{\left(-3\right)^2+0^2+\left(-1\right)^2}=\sqrt{10}\)

\(\left[\overrightarrow{AB};\overrightarrow{BC}\right]=\left(-3;-4;9\right)\)

Mặt phẳng (ABC) nhận (-3;-4;9) là 1 vtpt

Phương trình (ABC):

\(-3\left(x-1\right)-4\left(y+2\right)+9\left(z-4\right)=0\)

\(\Leftrightarrow-3x-4y+9z-41=0\)

\(d\left(M;\left(ABC\right)\right)=\dfrac{\left|-3.2+4.1+9.3-41\right|}{\sqrt{\left(-3\right)^2+\left(-4\right)^2+9^2}}=\dfrac{8\sqrt{106}}{53}\)

Bình luận (0)

Các câu hỏi tương tự
VT
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết