DY

1. Trong hệ trục tọa độ Oxy có A(2;3) B(1;4), C(-1;-5)

tìm tọa độ điểm I trên AB sao cho \(\left|\overrightarrow{IA}+3\overrightarrow{IB}+5\overrightarrow{IC}\right|\) có giá trị nhỏ nhất

NL
13 tháng 12 2021 lúc 20:51

\(\overrightarrow{AB}=\left(-1;1\right)\) nên pt AB có dạng:

\(1\left(x-2\right)+1\left(y-3\right)=0\Leftrightarrow x+y-5=0\)

Do I thuộc AB nên tọa độ có dạng: \(I\left(a;5-a\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{IA}=\left(2-a;a-2\right)\\\overrightarrow{IB}=\left(1-a;a-1\right)\\\overrightarrow{IC}=\left(-1-a;a-10\right)\end{matrix}\right.\)

\(\Rightarrow\overrightarrow{IA}+3\overrightarrow{IB}+5\overrightarrow{IC}=\left(-9a;9a-55\right)\)

\(\Rightarrow\left|\overrightarrow{IA}+3\overrightarrow{IB}+5\overrightarrow{IC}\right|=\sqrt{\left(9a\right)^2+\left(55-9a\right)^2}\ge\sqrt{\dfrac{1}{2}\left(9a+55-9a\right)^2}=\dfrac{55}{\sqrt{2}}\)

Dấu "=" xảy ra khi \(9a=55-9a\Rightarrow a=\dfrac{55}{18}\Rightarrow I\left(\dfrac{55}{18};\dfrac{35}{18}\right)\)

Kiểm tra lại tính toán

Bình luận (0)

Các câu hỏi tương tự
NA
Xem chi tiết
H24
Xem chi tiết
NB
Xem chi tiết
NA
Xem chi tiết
TH
Xem chi tiết
H24
Xem chi tiết
TD
Xem chi tiết
PP
Xem chi tiết
PP
Xem chi tiết