Bài 1:
a: =>2n=24
hay n=4
b: =>2x=32
=>x=5
c: =>15n=152
hay n=2
\(1,a,2^n=2^4\\ n=4\\ b,2^x=17+15\\ 2^x=32\\ 2^x=2^5\\ x=5\\ c,15^n=15^2\\ n=2\)
\(2,x^{50}=x=>x=0;x=1\)
`2^n =16`
`2^n=2^4`
`=> n=4`
_______________________
`2^x - 15=17`
`2^x = 17+14`
`2^x=32`
`2^x=2^5`
`=> x=5`
_________________
`15^n = 225`
`15^n=15^2`
`=> n=2`
____________________
`x^50 = x`
`=> x^50 - x=0`
`=> x.(x^49 -1)=0`
`@TH1:`
`x=0`
`@TH2:`
`x^49 - 1=0`
`x^49 = 0+1`
`x^49 = 1`
`x^49 = 1^49`
`=>x=1`
\(a,2^n=2^4\)
\(n=4\)
Vậy \(n=4\)
_____________________
\(b,2^x-15=17\)
\(2^x=17+15\)
\(2^x=32\)
\(2^x=2^5\)
\(x=5\)
Vậy \(x=5\)
__________________
\(c,15^n=225\)
\(15^n=15^2\)
\(n=2\)
Vậy \(n=2\)
________________________________
2.
Ta thấy \(x^{50}=x.x.x.x....x\)
Theo đó, giá trị thỏa mãn của \(x^{50}\) là \(x=0\) hoặc \(x=1\)