\(M=\dfrac{x}{2}+\sqrt{1-x-2x^2}\)
\(=\dfrac{x}{2}+\sqrt{\left(1-2x\right)\left(x+1\right)}\)
\(\le\dfrac{x}{2}+\dfrac{1-2x+x+1}{2}=1\)
Dấu "=" xảy ra khi \(1-2x=x+1\)
\(\Leftrightarrow x=0\)
Vậy . . . (bài này hổng chắc nhe -.-)
\(M=\dfrac{x}{2}+\sqrt{1-x-2x^2}\)
\(=\dfrac{x}{2}+\sqrt{\left(1-2x\right)\left(x+1\right)}\)
\(\le\dfrac{x}{2}+\dfrac{1-2x+x+1}{2}=1\)
Dấu "=" xảy ra khi \(1-2x=x+1\)
\(\Leftrightarrow x=0\)
Vậy . . . (bài này hổng chắc nhe -.-)
cho x,y,z>0 và \(x+y+z=\dfrac{3}{2}\)
chứng minh rằng \(\dfrac{\sqrt{x^2+xy+y^2}}{4yz+1}+\dfrac{\sqrt{y^2+yz+z^2}}{4zx+1}+\dfrac{\sqrt{z^2+xz+x^2}}{4xy+1}\ge\dfrac{3\sqrt{3}}{4}\)
\(P=\dfrac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+2}+\dfrac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\dfrac{2\sqrt{z}}{\sqrt{xz}+2\sqrt{z}+2}\)
Cho 3 số x, y, z dương TM: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\). CMR:
\(\sqrt{x+yz}+\sqrt{y+xz}+\sqrt{z+xy}\ge\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}\)
### Các thánh giải giùm em bài này với ###
Với các số dương x, y, z thỏa mãn \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\). Tìm Max của:
Q= \(\dfrac{x}{\sqrt{yz\left(1+x^2\right)}}+\dfrac{y}{\sqrt{xz\left(1+y^2\right)}}+\dfrac{z}{\sqrt{xy\left(1+z^2\right)}}\)
Bài 1: cho a, b > 0 và a + b <= 1. CMR: \(\dfrac{1}{3a^2+b^2}+\dfrac{2}{b^2+3ab}>=3\)
Bài 2: cho x, y, z >=0 thỏa mãn x + y + z >0. CMR: \(\dfrac{x}{4x+4y+z}+\dfrac{y}{4y+4z+x}+\dfrac{z}{4z+4x+y}< =\dfrac{1}{3}\)
Bài 3: cho x, y, z > 0 thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=3\)
Tìm GTNN của \(\dfrac{1}{\sqrt{2x^2+y^2+3}}+\dfrac{1}{\sqrt{2y^2+z^2+3}}+\dfrac{1}{\sqrt{2z^2}+x^2+3}\)
1) Giải phương trình:
\(\sqrt{x-3}+\sqrt{y-5}+\sqrt{z-4}=20-\dfrac{4}{\sqrt{x-3}}-\dfrac{9}{\sqrt{y-5}}-\dfrac{25}{\sqrt{z-4}}\)
2) Tìm GTLN, GTNN của biểu thức:
Q=\(\dfrac{-15}{3+\sqrt{6x-x^2-5}}\)
(\(\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{x}-\sqrt{y}}-\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)):\(\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\)
\(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}-\dfrac{\sqrt{x^3}-\sqrt{y^3}}{x+\sqrt{xy}+y}-2\sqrt{y}\)
\(\left(1-\dfrac{4\sqrt{x}}{x-1}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{x-2\sqrt{x}}{x-1}\) ĐKXĐ: x>0 ; x≠1 ; x≠4
\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{x-2\sqrt{x}}\right).\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{4}{x-4}\right)\) ĐKXĐ: x>0 và x≠4
Bài 1 :
a) giải phương trình : \(\sqrt{x-3}+\sqrt{y-5}+\sqrt{z-4}=20-\dfrac{4}{\sqrt{x-3}}-\dfrac{9}{\sqrt{y-5}}-\dfrac{25}{\sqrt{z-4}}\)
b) tìm GTLN, GTNN của biểu thức Q=\(\dfrac{-15}{3+\sqrt{6x-x^2-5}}\)
A=\(\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)(x≥0,x≠4,x≠9)
1,Tìm x để A.\(\sqrt{x}\)=-1
2,Tìm x∈ Z để A∈Z
3, Tìm Min \(\dfrac{1}{A}\)
4,Tìm x∈N để A là số nguyên dương lớn nhất
5,Khi A+\(|A|\)=0, tìm GTLN của bth A.\(\sqrt{x}\)