Xét ΔABD và ΔBAC có
BA chung
AD=BC
BD=AC
=>ΔABD=ΔBAC
=>góc JAB=góc JBA
=>JA=JB
Xét ΔICD có AB//CD
nên IA/AD=IB/BC
mà AD=BC
nên IA=IB
mà JA=JB
nên IJ là trung trực của AB
Xét ΔABD và ΔBAC có
BA chung
AD=BC
BD=AC
=>ΔABD=ΔBAC
=>góc JAB=góc JBA
=>JA=JB
Xét ΔICD có AB//CD
nên IA/AD=IB/BC
mà AD=BC
nên IA=IB
mà JA=JB
nên IJ là trung trực của AB
Cho hình thang cân ABCD (AB//CD); (AB<CD) các đường thẳng AD và BC cắt nhau tại M; đường chéo AC cắt đường chéo BD ở N. Chứng minh:
a) △NCD và △MCD cân
b) MN là đường trung trực của 2 đáy
1. Hình thang cân ABCD có O là giao điểm của hai đường thẳng chứa cạnh bên AD,BC và E là giao điểm của hai đường chéo. Chứng minh rằng OE là đường trung trực cảu hai đáy.
2. Hình thang cân ABCD (AB//CD) có hai đường chéo cắt nhau tại I, hai đường thẳng chứa các cạnh bên cắt nhau ở K. Chứng minh rằng KI là đường trung trực của hai đáy.
Cho hình thang cân ABCD(AB//CD) có hai đường chéo AC và BD cắt nhau tại I.Các đường thẳng chứa hai cạnh bên AD và BC cắt nhau tại K
chứng minh:Đường thẳng IK là đường trung trực của AB và CD
help cần gấp
cho hình thang cân ABCD(AB//CD,AB<CD)gọi O là giao điểm của AC và BD
a) chứng minh rằng OA=OB
b) đường thẳng AD cắt đường thẳng BC tại E. chứng minh tam giác EAO=tam giác EBO
c) chứng minh rằng EO là đường trung trực của đoạn thẳng AB và đoạn thẳng CD
Cho hình thang cân ABCD (AB//CD), AB<CD). AD cắt BC tại O
a) chứng minh rằng tam giác OAB cân
b) Gọi I,J lần lượt là trung điểm của AB và CD. Chứng minh rằng ba điểm I,J,O thẳng hàng
c) Qua điểm M thuộc cạnh AC vẽ đường thẳng song song với CD, cắt BD tại N. Chứng minh rằng MNAB và MNDC là các hình thang cân
Hình thang cân ABCD (AB// CD) có hai đường chéo cắt nhau tại I, hai đường thẳng chứa các cạnh bên cắt nhau ở K. Chứng minh rằng KI là đường trung trực của hai đáy.
Cho hình thang ABCD có AB//CD (AB<CD), M là trung điểm AD. Qua M vẽ đường thẳng // với 2 đáy của hình thang cắt 2 đường chéo BD và AC lần lượt tại E,F.
a) Chứng minh N, E, F lần lượt là trung điểm của BC, BD, AC
b) Gọi I là trưng điểm AB, đường thẳng vuông góc với IE cắt với nhau tại E và đường thẳng vuông góc với IF tại F cắt nhau tại K. Chứng minh KC=KD
1, Cho hình thang ABCD có đáy lớn CD. Qua A kẻ đường thẳng AK song song BC ( K thuộc CD ). Qua điểm B kẻ đường thẳng BI song song AD ( I thuộc CD ). BI cắt AC tại F; AK cắt BD tại E. Chứng minh rằng:
a, EF song song AB
b, AB2 = CD.EF
2, Cho tam giác ABC nhọn với H là trực tâm. Gọi M là trung điểm của BC. Các đường trung trực của AC và BC cắt nhau tại O. Chứng minh: AH = 2.OM
Hình thang cân ABCD (AB//CD) có 2 đường chéo cắt nhau tại E, 2 đường thẳng chứa các cạnh bên cắt nhau ở K. Chứng minh rằng KE là đường trung trực của 2 đáy