1. giải phương trình
a, (3x-4) (2x+1) (5x-2)=0
➜\(\left[{}\begin{matrix}3x-4=0\\2x+1=0\\5x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{4}{3}\\x=\frac{-1}{2}\\x=\frac{2}{5}\end{matrix}\right.\)
b, x(5x-3) -5x+3=0
➞ \(x\left(5x-3\right)-\left(5x-3\right)=0\)
➜\(\left(x-1\right)\left(5x-3\right)=0\)
➜\(\left[{}\begin{matrix}x-1=0\\5x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=\frac{3}{5}\end{matrix}\right.\)
\(a,\left(3x-4\right)\left(2x+1\right)\left(5x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-4=0\\2x+1=0\\5x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{4}{3}\\x=-\frac{1}{2}\\x=\frac{2}{5}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{\frac{4}{3};\frac{-1}{2};\frac{2}{5}\right\}\).
\(b,x\left(5x-3\right)-5x+3=0\)
\(\Leftrightarrow\left(5x-3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-3=0\\x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{3}{5}\\x=1\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{\frac{3}{5};1\right\}\).